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Multivariate Polynomials in CS

Ubiquitous in Computer Science 

•Algorithm design (Bipartite matching, Subgraph 
Isomorphism) 

•Coding theory (BCH, Reed-Solomon, Reed-Muller, PCPs)

•Derandomization (Worst Case to Average Case reductions)

•Boolean Circuit Complexity (Razborov-Smolensky)

•Polynomial Method in Combinatorics (Kakeya sets, Distinct 
distances, Joints problem, Cap sets)
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Computation with Multivariate Polynomials

Given a polynomial P, do something…

•Is P non-zero ? 

•What does P evaluate to at the origin ? 

•Output P + Q, P x Q, for some polynomial Q

•Output the first order partial derivatives of P 

•Output an f, which divides P 

But wait, how is P given ?
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Is there a representation which is more succinct than sum of 
monomials? 
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A circuit is called a formula if the underlying graph is a tree. 
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Arithmetic circuits

• Succinctly encode multivariate polynomials

• Evaluation, Sum, Product etc are easy

• Identity Testing is Efficient (with randomness)

• Can efficiently extract low degree components, can compute 
first order derivatives

• Most natural algorithms for computing polynomials are in fact 
arithmetic circuits for computing them

But, can we compute their factors efficiently ?
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Polynomial Factorization

Given an arithmetic circuit C, n-variate, degree d = poly(n), 
size(C) = poly(n), output the circuits for irreducible factors 
of C.

Is this even reasonable : is the output of size poly(n) ? 

Do factors of polynomials with ‘small’ arithmetic circuits 
have ‘small’ arithmetic circuits ?

Not true for sparse representation!

20
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Factors of sparse polynomials

Sparsity of P = s = 

Sparsity of the irreducible factor = s’ =            >>> poly(s) 

Another reason why this representation is not so nice…
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Theorem [Kaltofen]

Let P be an n-variate polynomial of degree d, which can be 
computed by a size s circuit. Then, any factor of P can be 
computed by a circuit of size poly(s, n, d). 

Moreover, a circuit for the factors can be computed in time 
poly(s, n, d) with randomness, even with only query 
access to circuit for P.

The complexity class VP is uniformly closed under taking 
factors. 30
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VP - algebraic P

n-variate polynomials of degree d = poly(n) which can be 
computed by circuits of size poly(n) 

Determinant =  

[Csanky, Berkowitz] Determinant is in VP. 

Esym(m, d) = 

[Folklore, Ben-Or] Esym(m,d) is in VP.
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VNP - algebraic NP

n-variate polynomials of degree d = poly(n) which are 
‘explicit’ - coefficient of any monomial can be efficiently 
determined 

Permanent =  

[Valiant] Permanent is complete for VNP. 
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Algebraic P vs Algebraic NP

•Valiant’s hypothesis : VNP is not contained in VP. 

•In particular, he conjectured that Permanent does not 
have poly(m) sized arithmetic circuits.

•Algebraic analogue of the P vs NP question. 

41



Cook’s vs Valiant’s hypothesis

42

P

NP

VP

VNP

P vs NP VP vs VNP



Cook’s vs Valiant’s hypothesis

[Burgisser] Under GRH, VP = VNP implies non-uniform P = 
non-uniform NP.

43

P

NP

VP

VNP

P vs NP VP vs VNP



Algebraic P vs Algebraic NP

Are there explicit polynomial families which cannot be 
computed by polynomial sized arithmetic circuits ? 
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Why do we care

•A fundamental question in computer science.

•Necessary for P vs NP, and potentially easier.

•Applications to derandomization.
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Polynomial Factorization

Theorem [Kaltofen]
Let P be an n-variate polynomial of degree d, which can be 
computed by a size s circuit. Then, any factor of P can be 
computed by a circuit of size poly(s, n, d). 

Moreover, a circuit for the factors can be computed in time 
poly(s, n, d) with randomness, even with only query 
access to circuit for P.

The complexity class VP is uniformly closed under taking 
factors!

47



What about closure of other classes ?

• If a polynomial is in VNP, are the factors in VNP ?  

•If a polynomial has small formulas, do its factors have 
small formulas ?  

•If a polynomial has small constant depth circuits, do the 
factors have small constant depth circuits ? 
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Why do we care ? 

•Closure under taking factors is a natural algebraic 
requirement, which any algebraically nice model of 
computation would have. So, natural to ask. 

•If VNP is not closed under taking factors, then VP is different 
from VNP.   

•The road from Hardness to Randomness goes via polynomial 
factorization.
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The complexity class VNP is closed under taking factors.
Conjecture [Burgisser]
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The complexity class VNP is closed under taking factors.

P =
X

Y2{0,1}m

Q(X,Y)

f =
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m = poly(n)
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Factors of polynomials in VNP

Theorem [Chou-K-Solomon]

f is a factor of P

The complexity class VNP is closed under taking factors.

P =
X

Y2{0,1}m

Q(X,Y)

f =
X

Y2{0,1}m0

Q0(X,Y)

m = poly(n)

m0
= poly(n, s)

size(Q) = poly(n) = s

size(Q0
) = poly(n, s)

Improves a quasi-polynomial upper bound of Dutta-Saxena-
Sinhababu.
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Theorem [Chou-K-Solomon, Dutta-Saxena-Sinhababu]

Let P be an n-variate degree D polynomial computable by a 
formula of size s, and let f be a factor of degree d of P. 
Then, f can be computed by a formula of size 
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Factors of polynomials with small formulas

Theorem [Chou-K-Solomon, Dutta-Saxena-Sinhababu]

For low, but growing degree factors, this is still poly(n). 

Let P be an n-variate degree D polynomial computable by a 
formula of size s, and let f be a factor of degree d of P. 
Then, f can be computed by a formula of size 
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P. Then, f can be computed by depth k + O(1) circuits of 
size 
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Factors of polynomials with shallow circuits

Theorem [Chou-K-Solomon]

Again, for low, but growing degree factors, this is still 
poly(n). 

Let P be an n-variate degree D polynomial computable by a 
depth k circuit of size s, and let f be a factor of degree d of 
P. Then, f can be computed by depth k + O(1) circuits of 
size 
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Factors of polynomials with shallow circuits

Theorem [Chou-K-Solomon]

Again, for low, but growing degree factors, this is still 
poly(n). 

A bound of                                   follows from Kaltofen’s 
result and standard structure theorems, but this is not 
poly(n,s) as long as d is growing.  

Let P be an n-variate degree D polynomial computable by a 
depth k circuit of size s, and let f be a factor of degree d of 
P. Then, f can be computed by depth k + O(1) circuits of 
size 
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Polynomial Identity Testing 

Input : An arithmetic circuit C of size s, degree d in n 
variables.

Question : Is the polynomial computed by C identically 
zero ?

A natural question on its own, but some unexpected and 
remarkable connections to lower bounds and algorithm 
design. 
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A simple randomized algorithm

Lemma [Ore, Schwartz, Zippel, DeMillo, Lipton]
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A simple randomized algorithm

Lemma [Ore, Schwartz, Zippel, DeMillo, Lipton]

So, querying the circuit at a random point from a large 
enough grid works with high probability. 
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Lemma [Ore, Schwartz, Zippel, DeMillo, Lipton]

So, querying the circuit at a random point from a large 
enough grid works with high probability. 

And, we didn’t even have to look inside the circuit. 

74

Let S be a subset of the field. Then, 

Pra2Sn [C(a) = 0]  d

|S|



A simple randomized algorithm

Lemma [Ore, Schwartz, Zippel, DeMillo, Lipton]

So, querying the circuit at a random point from a large 
enough grid works with high probability. 

And, we didn’t even have to look inside the circuit. 

Also, gives an exp(n log d) time deterministic algorithm. We 
are interested in doing anything better than this!
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Randomness from hardness

Theorem [Kabanets-Impagliazzo]
Super-polynomial lower bounds for arithmetic circuits 
imply non-trivial deterministic PIT for polynomial size 
arithmetic circuits.  
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Theorem [Kabanets-Impagliazzo]

Crucially, this proof uses Kaltofen’s result about closure 
of VP under factorization,

Super-polynomial lower bounds for arithmetic circuits 
imply non-trivial deterministic PIT for polynomial size 
arithmetic circuits.  
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Randomness from hardness

Theorem [Kabanets-Impagliazzo]

Crucially, this proof uses Kaltofen’s result about closure 
of VP under factorization.

And thus, does not extend to formulas or low depth 
circuits, where we do not know closure results.

Scaled down versions of this result ?

Super-polynomial lower bounds for arithmetic circuits 
imply non-trivial deterministic PIT for polynomial size 
arithmetic circuits.  

88



Randomness from hardness at low depth 

Question [Shpilka-Yehudayoff]
Do lower bounds for low depth circuits imply deterministic 
PIT for them ? 
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Randomness from hardness at low depth 

Question [Shpilka-Yehudayoff]

Theorem [Dvir-Shpilka-Yehudayoff]

Do lower bounds for low depth circuits imply deterministic 
PIT for them ? 

Lower bounds for low depth circuits imply deterministic 
PIT for low depth circuits with bounded individual degree. 
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Randomness from hardness at low depth 

Theorem [Chou-K-Solomon]
Super-polynomial lower bounds for low depth arithmetic 
circuits for poly(log n) degree polynomials imply non-
trivial deterministic PIT for them.

91
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Theorem [Chou-K-Solomon]

Thus, we get rid of the low individual degree assumption 
of Dvir et al. at the cost of asking for lower bounds for 
low degree polynomials. 

Super-polynomial lower bounds for low depth arithmetic 
circuits for poly(log n) degree polynomials imply non-
trivial deterministic PIT for them.
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Randomness from hardness at low depth 

Theorem [Chou-K-Solomon]

Thus, we get rid of the low individual degree assumption 
of Dvir et al. at the cost of asking for lower bounds for 
low degree polynomials. 

For depth k PIT, we need lower bounds for depth k+5 
circuits, which as of now, renders this result unusable.  

Super-polynomial lower bounds for low depth arithmetic 
circuits for poly(log n) degree polynomials imply non-
trivial deterministic PIT for them.

93



Randomness from hardness for formulas

Theorem [Chou-K-Solomon]
An           lower bound for (border of) formulas for a 
constant degree polynomial implies sub-exponential PIT 
for linear size formulas. 

n2+✏
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Randomness from hardness for formulas

Theorem [Chou-K-Solomon]
An           lower bound for (border of) formulas for a 
constant degree polynomial implies sub-exponential PIT 
for linear size formulas. 

n2+✏

Currently, we know           lower bounds of this kind. n2�✏

Currently, we don’t even know non-trivial PIT for linear size 
depth-4 formulas. 

So, (seemingly) small improvement in the state of lower 
bounds for formulas has extremely interesting 
consequences for the PIT question. 
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To summarize

• VNP (the algebraic analog of NP) is closed under taking 
factors.

• Low (but growing) degree factors of small formulas, low depth 
circuits have small formulas, low depth circuits respectively.

• Even somewhat non-trivial lower bounds for formulas, low 
depth circuits imply sub exponential time deterministic 
Identity Testing algorithms for them. 
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Key lemma : structure of factors

 Lemma (informal)

‘Normal form’ for factors. 

Let P be an n-variate polynomial of degree D, which can be 
computed by a size s circuit. Let f be a factor of P of 
degree d. 
Then, there exist polynomials                         whose 
complexity is closely related to that of P, and a d-variate 
polynomial Q of degree d which is computable by a size 
poly(d) circuit, such that                                  . 
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Key lemma : structure of factors

 Lemma (informal)

‘Normal form’ for factors. 

Would be helpful in arguing about their structure. 

Let P be an n-variate polynomial of degree D, which can be 
computed by a size s circuit. Let f be a factor of P of 
degree d. 
Then, there exist polynomials                         whose 
complexity is closely related to that of P, and a d-variate 
polynomial Q of degree d which is computable by a size 
poly(d) circuit, such that                                  . 
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Structure of factors
P, n-variate, degree D
size s circuit.

f, degree d factor of P.
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Structure of factors

· · · · · ·

P, n-variate, degree D
size s circuit.

f, degree d factor of P.

P1 P2 PdPd�1

Q

d-variate

degree-d
size-poly(d)

f
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P, n-variate, degree D
size s circuit.

f, degree d factor of P.

P1 P2 PdPd�1
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d-variate

degree-d
size-poly(d)

f

structure preserved
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P, n-variate, degree D
size s circuit.

f, degree d factor of P.

P1 P2 PdPd�1

Q

d-variate

degree-d
size-poly(d)

f

structure preserved formula ! formula

VNP ! VNP

low depth ! low depth
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Factors of poly in VNP
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P, n-variate, degree D
in VNP.

f, degree d factor of P.
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P, n-variate, degree D
in VNP.

f, degree d factor of P.

P1 P2 PdPd�1
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d-variate

degree-d
size-poly(d)
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Theorem [Valiant]
Q(P1,P2, . . . ,Pd)If each      is in VNP, then                             is in VNP.  Pi
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Theorem [Valiant]
Q(P1,P2, . . . ,Pd)If each      is in VNP, then                             is in VNP.  Pi

Thus, VNP is closed under taking factors. 
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Factors of formulas
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P, n-variate, degree D
has a size s formula.

f, degree d factor of P.
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size-poly(d)
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Theorem [Valiant-Skyum-Berkowitz-Rackoff]
Q has a formula of size                . 
Take the formula for    , and paste a formula for each      at 
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dO(logd)

Q Pi
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has a size s formula.
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P1 P2 PdPd�1

Q

d-variate

degree-d
size-poly(d)
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Theorem [Valiant-Skyum-Berkowitz-Rackoff]
Q has a formula of size                . 
Take the formula for    , and paste a formula for each      at 
the leaves.

dO(logd)

Pi

We get a formula for     of size                                       .f
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P, n-variate, degree D
has a size s, depth-k 
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d-variate
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f

Theorem [Agrawal-Vinay, Tavenas]
Q has a depth 2c circuit of size                . dO(d1/c)
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Theorem [Agrawal-Vinay, Tavenas]
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for each      at the leaves.
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· · · · · ·

P, n-variate, degree r
has a size s, depth-k 
circuit.

f, degree d factor of P.

P1 P2 PdPd�1

Q

d-variate

degree-d
size-poly(d)

f

Theorem [Agrawal-Vinay, Tavenas]
Q has a depth 2c circuit of size                . 
Take the shallow circuit for    , and paste the shallow circuit 
for each      at the leaves.

Q

Pi

We get a circuit  for    of depth                   and size                                     f

dO(d1/c)
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P, n-variate, degree D
size s circuit.

f, degree d factor of P.
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structure preserved formula ! formula

VNP ! VNP

low depth ! low depth
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The lemma for ‘roots’ of P.  

Preprocessing :  
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Structure of roots

The lemma for ‘roots’ of P.  

Preprocessing :  

Else, we work with a derivative of 
P. They also have ‘small’ circuits. 

P (X1, X1, . . . , Xn�1, Y )

f(X1, X1, . . . , Xn�1) P (X, f) = 0

size(P ) = sdegree(P ) = r

degree(f) = d
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Structure of roots

The lemma for ‘roots’ of P.  

Preprocessing :  

Else, we work with a derivative of 
P. They also have ‘small’ circuits. 

P (X1, X1, . . . , Xn�1, Y )

f(X1, X1, . . . , Xn�1) P (X, f) = 0

size(P ) = sdegree(P ) = r

degree(f) = d

Q(P1, P2, . . . , Pd) = f degree(Q) = d size(Q) = poly(d)

@P

@y
(X, f) 6= 0

@P

@y
(0, f(0)) = � 6= 0
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Structure of roots

The lemma for ‘roots’ of P.  

Preprocessing :  

Else, we work with a derivative of 
P. They also have ‘small’ circuits. 

P (X1, X1, . . . , Xn�1, Y )

f(X1, X1, . . . , Xn�1) P (X, f) = 0

size(P ) = sdegree(P ) = r

degree(f) = d

Q(P1, P2, . . . , Pd) = f degree(Q) = d size(Q) = poly(d)

@P

@y
(X, f) 6= 0

@P

@y
(0, f(0)) = � 6= 0 Else, we translate the origin to 

ensure this.
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Defining the generators

P (X, f(0) + Y ) = P (X, f(0)) + Y
@P

@Y
(X, f(0)) + · · ·+ Y r · 1

r!
· @

rP

@Y r
(X, f(0))
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Defining the generators

P (X, f(0) + Y ) = P (X, f(0)) + Y
@P

@Y
(X, f(0)) + · · ·+ Y r · 1

r!
· @

rP

@Y r
(X, f(0))

Pi(X) =
1

i!
· @

iP

@Y i
(X, f(0))� 1

i!
· @

iP

@Y i
(0, f(0))

P (X, f(0) + Y ) = P (X, f(0)) + Y · (P1 + ↵1) + Y 2 · (P2 + ↵2) + · · ·+ Y r · (Pr + ↵r)
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Defining the generators

P (X, f(0) + Y ) = P (X, f(0)) + Y
@P

@Y
(X, f(0)) + · · ·+ Y r · 1

r!
· @

rP

@Y r
(X, f(0))

P (X, f(0) + Y ) = P (X, f(0)) + Y · (P1 + ↵1) + Y 2 · (P2 + ↵2) + · · ·+ Y r · (Pr + ↵r)

Pi(0) = 0

P (X, f(0) + Y ) = P (X, f(0)) + Y · (P1 + �) + Y 2 · (P2 + ↵2) + · · ·+ Y r · (Pr + ↵r)
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Constructing the root : Newton iteration

We construct the root iteratively.

We start with the degree 0 term of the root. 

At the end of iteration i, we will be able to recover the 
homogeneous components of f of degree up to i. 
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P (X, f) = 0

Linear(P (X, f)) = 0

Linear(P (X, f(0) + L)) = 0

L := homogeneous component of f of degree equal to 1



Newton iteration : base case

Base case : Getting a circuit for the linear term

P (X, f(0) + L) = P (X, f(0)) + L · (P1 + �) + L2 · (P2 + ↵2) + · · ·+ Lr · (Pr + ↵r)
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�
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Newton iteration : general case

At the end of step k-1 : 

h = Ak�1(P0, P1, P2, . . . , Pd)

h0 = Ak(P0, P1, P2, . . . , Pd)

Degk(P (x), f(0) + h+ (h0 � h)) = 0 h0 = h�Degk

✓
1

�
(P (X, f(0) + h))

◆

P (X, f(0) + h) = P0 + P1 · h+ P2 · h2 + . . .+ Pr · hr

But, we are interested in monomials of degree at most d. 

Degk (P (X, f(0) + h)) = Degk
�
P0 + P1 · h+ P2 · h2 + . . .+ Pk · hk

�

So, we never look beyond the first d terms. f is a function of    
P0, P1, . . . , Pd

8j < k + 1,Degj(f(0) + h0) = Degj(f)

8j < k,Degj(f(0) + h) = Degj(f)
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The details we skipped 

•General factors, and not just roots

•The circuit complexity of the generators 

•The shape/depth of the circuit of the generators

•The degree of and circuit size of the ‘top level’ computation

•These can be addressed using some standard ideas 
(interpolation, homogenization etc.)
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Summary

• VNP is closed under taking factors.

• Low (but growing) degree factors of small formulas, low depth 
circuits have small formulas, low depth circuits respectively.

• Even somewhat non-trivial lower bounds for formulas, low 
depth circuits imply sub exponential time deterministic 
Identity Testing algorithms for them. 
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Thank You!


