
Some Closure Results for Polynomial
Factorization and Applications

Mrinal Kumar

Simons Institute -> University of Toronto

Joint work with Chi-Ning Chou (Harvard) and Noam Solomon (MIT)

Multivariate Polynomials

P =
X

e

↵eX
e

e = (e1, e2, . . . , en),
X

i

ei  d Xe = Xe1
1 Xe2

2 · · ·Xen
n

Polynomial on n variables, of degree d.

2

↵e- field elements

Multivariate Polynomials in CS

3

Multivariate Polynomials in CS

Ubiquitous in Computer Science

3

Multivariate Polynomials in CS

Ubiquitous in Computer Science

•Algorithm design (Bipartite matching, Subgraph
Isomorphism)

3

Multivariate Polynomials in CS

Ubiquitous in Computer Science

•Algorithm design (Bipartite matching, Subgraph
Isomorphism)

•Coding theory (BCH, Reed-Solomon, Reed-Muller, PCPs)

3

Multivariate Polynomials in CS

Ubiquitous in Computer Science

•Algorithm design (Bipartite matching, Subgraph
Isomorphism)

•Coding theory (BCH, Reed-Solomon, Reed-Muller, PCPs)

•Derandomization (Worst Case to Average Case reductions)

3

Multivariate Polynomials in CS

Ubiquitous in Computer Science

•Algorithm design (Bipartite matching, Subgraph
Isomorphism)

•Coding theory (BCH, Reed-Solomon, Reed-Muller, PCPs)

•Derandomization (Worst Case to Average Case reductions)

•Boolean Circuit Complexity (Razborov-Smolensky)

3

Multivariate Polynomials in CS

Ubiquitous in Computer Science

•Algorithm design (Bipartite matching, Subgraph
Isomorphism)

•Coding theory (BCH, Reed-Solomon, Reed-Muller, PCPs)

•Derandomization (Worst Case to Average Case reductions)

•Boolean Circuit Complexity (Razborov-Smolensky)

•Polynomial Method in Combinatorics (Kakeya sets, Distinct
distances, Joints problem, Cap sets)

3

Computation with Multivariate Polynomials

4

Computation with Multivariate Polynomials

Given a polynomial P, do something…

4

Computation with Multivariate Polynomials

Given a polynomial P, do something…

•Is P non-zero ?

4

Computation with Multivariate Polynomials

Given a polynomial P, do something…

•Is P non-zero ?

•What does P evaluate to at the origin ?

4

Computation with Multivariate Polynomials

Given a polynomial P, do something…

•Is P non-zero ?

•What does P evaluate to at the origin ?

•Output P + Q, P x Q, for some polynomial Q

4

Computation with Multivariate Polynomials

Given a polynomial P, do something…

•Is P non-zero ?

•What does P evaluate to at the origin ?

•Output P + Q, P x Q, for some polynomial Q

•Output the first order partial derivatives of P

4

Computation with Multivariate Polynomials

Given a polynomial P, do something…

•Is P non-zero ?

•What does P evaluate to at the origin ?

•Output P + Q, P x Q, for some polynomial Q

•Output the first order partial derivatives of P

•Output an f, which divides P

4

Computation with Multivariate Polynomials

Given a polynomial P, do something…

•Is P non-zero ?

•What does P evaluate to at the origin ?

•Output P + Q, P x Q, for some polynomial Q

•Output the first order partial derivatives of P

•Output an f, which divides P

But wait, how is P given ?

4

Representing Multivariate Polynomials

5

Representing Multivariate Polynomials

Sparse representation : as a sum of monomials

6

P =
X

e

↵eX
e

Representing Multivariate Polynomials

Sparse representation : as a sum of monomials

Intuitive and natural

7

P =
X

e

↵eX
e

Representing Multivariate Polynomials

Sparse representation : as a sum of monomials

Intuitive and natural

Many operations are easy (sum, product, derivatives…)

8

P =
X

e

↵eX
e

Representing Multivariate Polynomials

Sparse representation : as a sum of monomials

Intuitive and natural

Many operations are easy (sum, product, derivatives…)

But, highly non-succinct (exp(n) monomials, hard to evaluate)

9

P =
X

e

↵eX
e

Representing Multivariate Polynomials

Sparse representation : as a sum of monomials

Intuitive and natural

Many operations are easy (sum, product, derivatives…)

But, highly non-succinct (exp(n) monomials, hard to evaluate)

10

P =
X

e

↵eX
e

P =
X

S✓[n]

Y

i2S

Xi

Representing Multivariate Polynomials

Sparse representation : as a sum of monomials

Intuitive and natural

Many operations are easy (sum, product, derivatives…)

But, highly non-succinct (exp(n) monomials, hard to evaluate)

11

P =
X

e

↵eX
e

P =
X

S✓[n]

Y

i2S

Xi P =
Y

i=[n]

(Xi + 1)

Representing Multivariate Polynomials

Sparse representation : as a sum of monomials

Intuitive and natural

Many operations are easy (sum, product, derivatives…)

But, highly non-succinct (exp(n) monomials, hard to evaluate)

12

P =
X

e

↵eX
e

P =
X

S✓[n]

Y

i2S

Xi P =
Y

i=[n]

(Xi + 1)

Is there a representation which is more succinct than sum of
monomials?

Arithmetic circuits

13

X1 X2 X3

Multivariate polynomial
P 2 F[X1, X2, . . . , Xn]

⇥ ⇥ ⇥

+ + + +

+

7

Arithmetic circuits

14

X1 X2 X3

+ +

1

⇥

+

(X1 + 1)(X2 + 1)(X3 + 1)

Arithmetic circuits

15

X1 X2 X3

Multivariate polynomial
P 2 F[X1, X2, . . . , Xn]

⇥ ⇥ ⇥

+ + + +

+

Depth - 3

7

Arithmetic circuits

16

X1 X2 X3

Multivariate polynomial
P 2 F[X1, X2, . . . , Xn]

⇥ ⇥ ⇥

+ + + +

+

Depth - 3

Size - 8

7

Arithmetic circuits

17

X1 X2 X3

Multivariate polynomial
P 2 F[X1, X2, . . . , Xn]

⇥ ⇥ ⇥

+ + + +

+

Depth - 3

Size - 8

An underlying field
7

Arithmetic circuits

18

X1 X2 X3

Multivariate polynomial
P 2 F[X1, X2, . . . , Xn]

⇥ ⇥ ⇥

+ + + +

+

Depth - 3

Size - 8

An underlying field
7

A circuit is called a formula if the underlying graph is a tree.

Arithmetic circuits

19

Arithmetic circuits

• Succinctly encode multivariate polynomials

19

Arithmetic circuits

• Succinctly encode multivariate polynomials

• Evaluation, Sum, Product etc are easy

19

Arithmetic circuits

• Succinctly encode multivariate polynomials

• Evaluation, Sum, Product etc are easy

• Identity Testing is Efficient (with randomness)

19

Arithmetic circuits

• Succinctly encode multivariate polynomials

• Evaluation, Sum, Product etc are easy

• Identity Testing is Efficient (with randomness)

• Can efficiently extract low degree components, can compute
first order derivatives

19

Arithmetic circuits

• Succinctly encode multivariate polynomials

• Evaluation, Sum, Product etc are easy

• Identity Testing is Efficient (with randomness)

• Can efficiently extract low degree components, can compute
first order derivatives

• Most natural algorithms for computing polynomials are in fact
arithmetic circuits for computing them

19

Arithmetic circuits

• Succinctly encode multivariate polynomials

• Evaluation, Sum, Product etc are easy

• Identity Testing is Efficient (with randomness)

• Can efficiently extract low degree components, can compute
first order derivatives

• Most natural algorithms for computing polynomials are in fact
arithmetic circuits for computing them

But, can we compute their factors efficiently ?

19

Polynomial Factorization

20

Polynomial Factorization

Given an arithmetic circuit C, n-variate, degree d = poly(n),
size(C) = poly(n), output the circuits for irreducible factors
of C.

20

Polynomial Factorization

Given an arithmetic circuit C, n-variate, degree d = poly(n),
size(C) = poly(n), output the circuits for irreducible factors
of C.

20

Polynomial Factorization

Given an arithmetic circuit C, n-variate, degree d = poly(n),
size(C) = poly(n), output the circuits for irreducible factors
of C.

Is this even reasonable : is the output of size poly(n) ?

20

Polynomial Factorization

Given an arithmetic circuit C, n-variate, degree d = poly(n),
size(C) = poly(n), output the circuits for irreducible factors
of C.

Is this even reasonable : is the output of size poly(n) ?

Do factors of polynomials with ‘small’ arithmetic circuits
have ‘small’ arithmetic circuits ?

20

Polynomial Factorization

Given an arithmetic circuit C, n-variate, degree d = poly(n),
size(C) = poly(n), output the circuits for irreducible factors
of C.

Is this even reasonable : is the output of size poly(n) ?

Do factors of polynomials with ‘small’ arithmetic circuits
have ‘small’ arithmetic circuits ?

Not true for sparse representation!

20

Factors of sparse polynomials

P = y
Y

i2[n]

(Xi � 1) +
Y

i2[n]

(Xn
i � 1)

21

Factors of sparse polynomials

P = y
Y

i2[n]

(Xi � 1) +
Y

i2[n]

(Xn
i � 1)

P =
Y

i2[n]

(Xi � 1)

0

@y +
Y

i2[n]

�
Xn�1

i +Xn�2
i + · · ·+ 1

�
1

A

22

Factors of sparse polynomials

Sparsity of P = s =

P = y
Y

i2[n]

(Xi � 1) +
Y

i2[n]

(Xn
i � 1)

P =
Y

i2[n]

(Xi � 1)

0

@y +
Y

i2[n]

�
Xn�1

i +Xn�2
i + · · ·+ 1

�
1

A

O(2n)

23

Factors of sparse polynomials

Sparsity of P = s =

Sparsity of the irreducible factor = s’ = >>> poly(s)

P = y
Y

i2[n]

(Xi � 1) +
Y

i2[n]

(Xn
i � 1)

P =
Y

i2[n]

(Xi � 1)

0

@y +
Y

i2[n]

�
Xn�1

i +Xn�2
i + · · ·+ 1

�
1

A

O(2n)

24

⇥(nn)

Factors of sparse polynomials

Sparsity of P = s =

Sparsity of the irreducible factor = s’ = >>> poly(s)

Another reason why this representation is not so nice…

P = y
Y

i2[n]

(Xi � 1) +
Y

i2[n]

(Xn
i � 1)

P =
Y

i2[n]

(Xi � 1)

0

@y +
Y

i2[n]

�
Xn�1

i +Xn�2
i + · · ·+ 1

�
1

A

O(2n)

25

⇥(nn)

Polynomial Factorization

Given an arithmetic circuit C, n-variate, degree d = poly(n),
size(C) = poly(n), output the circuits for irred. factors of C.

26

Polynomial Factorization

Given an arithmetic circuit C, n-variate, degree d = poly(n),
size(C) = poly(n), output the circuits for irred. factors of C.

• Does the factor even have a small circuit ?

27

Polynomial Factorization

Given an arithmetic circuit C, n-variate, degree d = poly(n),
size(C) = poly(n), output the circuits for irred. factors of C.

• Does the factor even have a small circuit ?

Theorem [Kaltofen]

Let P be an n-variate polynomial of degree d, which can be
computed by a size s circuit. Then, any factor of P can be
computed by a circuit of size poly(s, n, d).

28

Polynomial Factorization

Given an arithmetic circuit C, n-variate, degree d = poly(n),
size(C) = poly(n), output the circuits for irred. factors of C.

• Does the factor even have a small circuit ?

Theorem [Kaltofen]

Let P be an n-variate polynomial of degree d, which can be
computed by a size s circuit. Then, any factor of P can be
computed by a circuit of size poly(s, n, d).

Moreover, a circuit for the factors can be computed in time
poly(s, n, d) with randomness, even with only query
access to circuit for P.

29

Polynomial Factorization

Given an arithmetic circuit C, n-variate, degree d = poly(n),
size(C) = poly(n), output the circuits for irred. factors of C.

• Does the factor even have a small circuit ?

Theorem [Kaltofen]

Let P be an n-variate polynomial of degree d, which can be
computed by a size s circuit. Then, any factor of P can be
computed by a circuit of size poly(s, n, d).

Moreover, a circuit for the factors can be computed in time
poly(s, n, d) with randomness, even with only query
access to circuit for P.

The complexity class VP is uniformly closed under taking
factors. 30

Detour : Algebraic P and NP

VP - algebraic P

n-variate polynomials of degree d = poly(n) which can be
computed by circuits of size poly(n)

32

VP - algebraic P

n-variate polynomials of degree d = poly(n) which can be
computed by circuits of size poly(n)

Determinant =

33

X

⇡2Sm

(�1)sign(⇡)
mY

j=1

Xj,⇡(j)

VP - algebraic P

n-variate polynomials of degree d = poly(n) which can be
computed by circuits of size poly(n)

Determinant =

[Csanky, Berkowitz] Determinant is in VP.

34

X

⇡2Sm

(�1)sign(⇡)
mY

j=1

Xj,⇡(j)

VP - algebraic P

n-variate polynomials of degree d = poly(n) which can be
computed by circuits of size poly(n)

Determinant =

[Csanky, Berkowitz] Determinant is in VP.

Esym(m, d) =

35

X

⇡2Sm

(�1)sign(⇡)
mY

j=1

Xj,⇡(j)

X

S2([m]
d)

Y

j2S

Xj

VP - algebraic P

n-variate polynomials of degree d = poly(n) which can be
computed by circuits of size poly(n)

Determinant =

[Csanky, Berkowitz] Determinant is in VP.

Esym(m, d) =

[Folklore, Ben-Or] Esym(m,d) is in VP.

36

X

⇡2Sm

(�1)sign(⇡)
mY

j=1

Xj,⇡(j)

X

S2([m]
d)

Y

j2S

Xj

VNP - algebraic NP

n-variate polynomials of degree d = poly(n) which are
‘explicit’

37

VNP - algebraic NP

n-variate polynomials of degree d = poly(n) which are
‘explicit’ - coefficient of any monomial can be efficiently
determined

38

VNP - algebraic NP

n-variate polynomials of degree d = poly(n) which are
‘explicit’ - coefficient of any monomial can be efficiently
determined

Permanent =

39

X

⇡2Sm

mY

j=1

Xj,⇡(j)

VNP - algebraic NP

n-variate polynomials of degree d = poly(n) which are
‘explicit’ - coefficient of any monomial can be efficiently
determined

Permanent =

[Valiant] Permanent is complete for VNP.

40

X

⇡2Sm

mY

j=1

Xj,⇡(j)

Algebraic P vs Algebraic NP

41

Algebraic P vs Algebraic NP

•Valiant’s hypothesis : VNP is not contained in VP.

41

Algebraic P vs Algebraic NP

•Valiant’s hypothesis : VNP is not contained in VP.

•In particular, he conjectured that Permanent does not
have poly(m) sized arithmetic circuits.

41

Algebraic P vs Algebraic NP

•Valiant’s hypothesis : VNP is not contained in VP.

•In particular, he conjectured that Permanent does not
have poly(m) sized arithmetic circuits.

•Algebraic analogue of the P vs NP question.

41

Cook’s vs Valiant’s hypothesis

42

P

NP

VP

VNP

P vs NP VP vs VNP

Cook’s vs Valiant’s hypothesis

[Burgisser] Under GRH, VP = VNP implies non-uniform P =
non-uniform NP.

43

P

NP

VP

VNP

P vs NP VP vs VNP

Algebraic P vs Algebraic NP

Are there explicit polynomial families which cannot be
computed by polynomial sized arithmetic circuits ?

44

Why do we care

45

Why do we care

•A fundamental question in computer science.

45

Why do we care

•A fundamental question in computer science.

•Necessary for P vs NP, and potentially easier.

45

Why do we care

•A fundamental question in computer science.

•Necessary for P vs NP, and potentially easier.

•Applications to derandomization.

45

Closure under Factorization

Polynomial Factorization

Theorem [Kaltofen]
Let P be an n-variate polynomial of degree d, which can be
computed by a size s circuit. Then, any factor of P can be
computed by a circuit of size poly(s, n, d).

Moreover, a circuit for the factors can be computed in time
poly(s, n, d) with randomness, even with only query
access to circuit for P.

The complexity class VP is uniformly closed under taking
factors!

47

What about closure of other classes ?

• If a polynomial is in VNP, are the factors in VNP ?

•If a polynomial has small formulas, do its factors have
small formulas ?

•If a polynomial has small constant depth circuits, do the
factors have small constant depth circuits ?

48

Why do we care ?

49

Why do we care ?

•Closure under taking factors is a natural algebraic
requirement, which any algebraically nice model of
computation would have. So, natural to ask.

49

Why do we care ?

•Closure under taking factors is a natural algebraic
requirement, which any algebraically nice model of
computation would have. So, natural to ask.

•If VNP is not closed under taking factors, then VP is different
from VNP.

49

Why do we care ?

•Closure under taking factors is a natural algebraic
requirement, which any algebraically nice model of
computation would have. So, natural to ask.

•If VNP is not closed under taking factors, then VP is different
from VNP.

•The road from Hardness to Randomness goes via polynomial
factorization.

49

Why do we care ?

•Closure under taking factors is a natural algebraic
requirement, which any algebraically nice model of
computation would have. So, natural to ask.

•If VNP is not closed under taking factors, then VP is different
from VNP.

•The road from Hardness to Randomness goes via polynomial
factorization.

50

The complexity class VNP is closed under taking factors.
Conjecture [Burgisser]

Results I : Closure results

Factors of polynomials in VNP

Factors of polynomials in VNP

Theorem [Chou-K-Solomon]
The complexity class VNP is closed under taking factors.

Factors of polynomials in VNP

Theorem [Chou-K-Solomon]
The complexity class VNP is closed under taking factors.

P =
X

Y2{0,1}m

Q(X,Y)

Factors of polynomials in VNP

Theorem [Chou-K-Solomon]
The complexity class VNP is closed under taking factors.

P =
X

Y2{0,1}m

Q(X,Y)
size(Q) = poly(n) = s

Factors of polynomials in VNP

Theorem [Chou-K-Solomon]
The complexity class VNP is closed under taking factors.

P =
X

Y2{0,1}m

Q(X,Y)
m = poly(n)

size(Q) = poly(n) = s

Factors of polynomials in VNP

Theorem [Chou-K-Solomon]

f is a factor of P

The complexity class VNP is closed under taking factors.

P =
X

Y2{0,1}m

Q(X,Y)
m = poly(n)

size(Q) = poly(n) = s

Factors of polynomials in VNP

Theorem [Chou-K-Solomon]

f is a factor of P

The complexity class VNP is closed under taking factors.

P =
X

Y2{0,1}m

Q(X,Y)

f =
X

Y2{0,1}m0

Q0(X,Y)

m = poly(n)

size(Q) = poly(n) = s

Factors of polynomials in VNP

Theorem [Chou-K-Solomon]

f is a factor of P

The complexity class VNP is closed under taking factors.

P =
X

Y2{0,1}m

Q(X,Y)

f =
X

Y2{0,1}m0

Q0(X,Y)

m = poly(n)

size(Q) = poly(n) = s

size(Q0
) = poly(n, s)

Factors of polynomials in VNP

Theorem [Chou-K-Solomon]

f is a factor of P

The complexity class VNP is closed under taking factors.

P =
X

Y2{0,1}m

Q(X,Y)

f =
X

Y2{0,1}m0

Q0(X,Y)

m = poly(n)

m0
= poly(n, s)

size(Q) = poly(n) = s

size(Q0
) = poly(n, s)

Factors of polynomials in VNP

Theorem [Chou-K-Solomon]

f is a factor of P

The complexity class VNP is closed under taking factors.

P =
X

Y2{0,1}m

Q(X,Y)

f =
X

Y2{0,1}m0

Q0(X,Y)

m = poly(n)

m0
= poly(n, s)

size(Q) = poly(n) = s

size(Q0
) = poly(n, s)

Improves a quasi-polynomial upper bound of Dutta-Saxena-
Sinhababu.

61

Factors of polynomials with small formulas

62

Factors of polynomials with small formulas

Theorem [Chou-K-Solomon, Dutta-Saxena-Sinhababu]

Let P be an n-variate degree D polynomial computable by a
formula of size s, and let f be a factor of degree d of P.
Then, f can be computed by a formula of size

63

dO(logd) · poly(n, s,D)

Factors of polynomials with small formulas

Theorem [Chou-K-Solomon, Dutta-Saxena-Sinhababu]

For low, but growing degree factors, this is still poly(n).

Let P be an n-variate degree D polynomial computable by a
formula of size s, and let f be a factor of degree d of P.
Then, f can be computed by a formula of size

64

dO(logd) · poly(n, s,D)

Factors of polynomials with shallow circuits

65

Factors of polynomials with shallow circuits

Theorem [Chou-K-Solomon]
Let P be an n-variate degree D polynomial computable by a
depth k circuit of size s, and let f be a factor of degree d of
P. Then, f can be computed by depth k + O(1) circuits of
size

66

dO(d✏) · poly(n, s,D)

Factors of polynomials with shallow circuits

Theorem [Chou-K-Solomon]

Again, for low, but growing degree factors, this is still
poly(n).

Let P be an n-variate degree D polynomial computable by a
depth k circuit of size s, and let f be a factor of degree d of
P. Then, f can be computed by depth k + O(1) circuits of
size

67

dO(d✏) · poly(n, s,D)

Factors of polynomials with shallow circuits

Theorem [Chou-K-Solomon]

Again, for low, but growing degree factors, this is still
poly(n).

A bound of follows from Kaltofen’s
result and standard structure theorems, but this is not
poly(n,s) as long as d is growing.

Let P be an n-variate degree D polynomial computable by a
depth k circuit of size s, and let f be a factor of degree d of
P. Then, f can be computed by depth k + O(1) circuits of
size

68

dO(d✏) · poly(n, s,D)

nO(d✏) · poly(n, s,D)

Results II : Applications to Hardness vs
Randomness

69

Hardness vs Randomness

70

Hardness vs Randomness

70

Hardness vs Randomness

Two fundamental family of questions in computational complexity

70

Hardness vs Randomness

Two fundamental family of questions in computational complexity

70

Hardness vs Randomness

Two fundamental family of questions in computational complexity

Lower bounds : ‘explicit’ hard functions

70

Hardness vs Randomness

Two fundamental family of questions in computational complexity

Lower bounds : ‘explicit’ hard functions

70

Hardness vs Randomness

Two fundamental family of questions in computational complexity

Lower bounds : ‘explicit’ hard functions

Derandomization : does every problem with an efficient randomized
algorithm have an efficient deterministic algorithm

70

Hardness vs Randomness

Two fundamental family of questions in computational complexity

Lower bounds : ‘explicit’ hard functions

Derandomization : does every problem with an efficient randomized
algorithm have an efficient deterministic algorithm

70

Hardness vs Randomness

Two fundamental family of questions in computational complexity

Lower bounds : ‘explicit’ hard functions

Derandomization : does every problem with an efficient randomized
algorithm have an efficient deterministic algorithm

Seemingly unrelated, but have rich, insightful and deep connections
to each other [Nisan, Wigderson, Impagliazzo, Kabanets….]

70

Hardness vs Randomness

Two fundamental family of questions in computational complexity

Lower bounds : ‘explicit’ hard functions

Derandomization : does every problem with an efficient randomized
algorithm have an efficient deterministic algorithm

Seemingly unrelated, but have rich, insightful and deep connections
to each other [Nisan, Wigderson, Impagliazzo, Kabanets….]

70

Hardness vs Randomness

Two fundamental family of questions in computational complexity

Lower bounds : ‘explicit’ hard functions

Derandomization : does every problem with an efficient randomized
algorithm have an efficient deterministic algorithm

Seemingly unrelated, but have rich, insightful and deep connections
to each other [Nisan, Wigderson, Impagliazzo, Kabanets….]

Here, we focus on this phenomenon for algebraic computation

70

Hardness vs Randomness

Two fundamental family of questions in computational complexity

Lower bounds : ‘explicit’ hard functions

Derandomization : does every problem with an efficient randomized
algorithm have an efficient deterministic algorithm

Seemingly unrelated, but have rich, insightful and deep connections
to each other [Nisan, Wigderson, Impagliazzo, Kabanets….]

Here, we focus on this phenomenon for algebraic computation

70

Hardness vs Randomness

Two fundamental family of questions in computational complexity

Lower bounds : ‘explicit’ hard functions

Derandomization : does every problem with an efficient randomized
algorithm have an efficient deterministic algorithm

Seemingly unrelated, but have rich, insightful and deep connections
to each other [Nisan, Wigderson, Impagliazzo, Kabanets….]

Here, we focus on this phenomenon for algebraic computation

70

Hardness vs Randomness

Two fundamental family of questions in computational complexity

Lower bounds : ‘explicit’ hard functions

Derandomization : does every problem with an efficient randomized
algorithm have an efficient deterministic algorithm

Seemingly unrelated, but have rich, insightful and deep connections
to each other [Nisan, Wigderson, Impagliazzo, Kabanets….]

Here, we focus on this phenomenon for algebraic computation

70

Polynomial Identity Testing

71

Polynomial Identity Testing

Input : An arithmetic circuit C of size s, degree d in n
variables.

71

Polynomial Identity Testing

Input : An arithmetic circuit C of size s, degree d in n
variables.

Question : Is the polynomial computed by C identically
zero ?

71

Polynomial Identity Testing

Input : An arithmetic circuit C of size s, degree d in n
variables.

Question : Is the polynomial computed by C identically
zero ?

71

Polynomial Identity Testing

Input : An arithmetic circuit C of size s, degree d in n
variables.

Question : Is the polynomial computed by C identically
zero ?

A natural question on its own, but some unexpected and
remarkable connections to lower bounds and algorithm
design.

71

A simple randomized algorithm

Lemma [Ore, Schwartz, Zippel, DeMillo, Lipton]

72

Let S be a subset of the field. Then,

Pra2Sn [C(a) = 0]  d

|S|

A simple randomized algorithm

Lemma [Ore, Schwartz, Zippel, DeMillo, Lipton]

So, querying the circuit at a random point from a large
enough grid works with high probability.

73

Let S be a subset of the field. Then,

Pra2Sn [C(a) = 0]  d

|S|

A simple randomized algorithm

Lemma [Ore, Schwartz, Zippel, DeMillo, Lipton]

So, querying the circuit at a random point from a large
enough grid works with high probability.

And, we didn’t even have to look inside the circuit.

74

Let S be a subset of the field. Then,

Pra2Sn [C(a) = 0]  d

|S|

A simple randomized algorithm

Lemma [Ore, Schwartz, Zippel, DeMillo, Lipton]

So, querying the circuit at a random point from a large
enough grid works with high probability.

And, we didn’t even have to look inside the circuit.

Also, gives an exp(n log d) time deterministic algorithm. We
are interested in doing anything better than this!

75

Let S be a subset of the field. Then,

Pra2Sn [C(a) = 0]  d

|S|

Deterministic Polynomial Identity Testing

76

Deterministic Polynomial Identity Testing

Deterministic polynomial identity testing has some remarkable
consequences.

76

Deterministic Polynomial Identity Testing

Deterministic polynomial identity testing has some remarkable
consequences.

76

Deterministic Polynomial Identity Testing

Deterministic polynomial identity testing has some remarkable
consequences.

•Lower bounds closely related to VP vs VNP [Kabanets-
Impagliazzo]

76

Deterministic Polynomial Identity Testing

Deterministic polynomial identity testing has some remarkable
consequences.

•Lower bounds closely related to VP vs VNP [Kabanets-
Impagliazzo]

•Deterministic polynomial factorization [Kopparty-Saraf-Shpilka]

76

Deterministic Polynomial Identity Testing

Deterministic polynomial identity testing has some remarkable
consequences.

•Lower bounds closely related to VP vs VNP [Kabanets-
Impagliazzo]

•Deterministic polynomial factorization [Kopparty-Saraf-Shpilka]

•Deterministic parallel algorithms for bipartite matching [Lovasz,
Mulmuley-Vazirani-Vazirani]

76

Deterministic Polynomial Identity Testing

Deterministic polynomial identity testing has some remarkable
consequences.

•Lower bounds closely related to VP vs VNP [Kabanets-
Impagliazzo]

•Deterministic polynomial factorization [Kopparty-Saraf-Shpilka]

•Deterministic parallel algorithms for bipartite matching [Lovasz,
Mulmuley-Vazirani-Vazirani]

•Deterministic algorithms for many subgraph isomorphism problems

76

Deterministic Polynomial Identity Testing

Deterministic polynomial identity testing has some remarkable
consequences.

• Lower bounds closely related to VP vs VNP [Kabanets-
Impagliazzo]

•Deterministic polynomial factorization [Kopparty-Saraf-Shpilka]

•Deterministic parallel algorithms for bipartite matching [Lovasz,
Mulmuley-Vazirani-Vazirani]

•Deterministic algorithms for many subgraph isomorphism problems

77

Hardness and Randomness

78

Hardness and Randomness

79

Deterministic Polynomial Identity Testing

Hardness and Randomness

80

Deterministic Polynomial Identity Testing

Explicit Lower Bounds for Arithmetic Circuits

Hardness and Randomness

81

Deterministic Polynomial Identity Testing

Explicit Lower Bounds for Arithmetic Circuits

Hardness and Randomness

82

Deterministic Polynomial Identity Testing

Heintz-Schnorr
derandomization to hardness

Kabanets-Impagliazzo

Explicit Lower Bounds for Arithmetic Circuits

Hardness and Randomness

83

Deterministic Polynomial Identity Testing

Heintz-Schnorr
derandomization to hardness

Kabanets-Impagliazzo

Explicit Lower Bounds for Arithmetic Circuits

Hardness and Randomness

84

Deterministic Polynomial Identity Testing

Heintz-Schnorr Kabanets-Impagliazzo
derandomization to hardness hardness to derandomization

Kabanets-Impagliazzo

Explicit Lower Bounds for Arithmetic Circuits

Hardness and Randomness

85

Deterministic Polynomial Identity Testing

Explicit Lower Bounds for Arithmetic Circuits

Heintz-Schnorr Kabanets-Impagliazzo
derandomization to hardness hardness to derandomization

Kabanets-Impagliazzo

Randomness from hardness

Theorem [Kabanets-Impagliazzo]
Super-polynomial lower bounds for arithmetic circuits
imply non-trivial deterministic PIT for polynomial size
arithmetic circuits.

86

Randomness from hardness

Theorem [Kabanets-Impagliazzo]

Crucially, this proof uses Kaltofen’s result about closure
of VP under factorization,

Super-polynomial lower bounds for arithmetic circuits
imply non-trivial deterministic PIT for polynomial size
arithmetic circuits.

87

Randomness from hardness

Theorem [Kabanets-Impagliazzo]

Crucially, this proof uses Kaltofen’s result about closure
of VP under factorization.

And thus, does not extend to formulas or low depth
circuits, where we do not know closure results.

Scaled down versions of this result ?

Super-polynomial lower bounds for arithmetic circuits
imply non-trivial deterministic PIT for polynomial size
arithmetic circuits.

88

Randomness from hardness at low depth

Question [Shpilka-Yehudayoff]
Do lower bounds for low depth circuits imply deterministic
PIT for them ?

89

Randomness from hardness at low depth

Question [Shpilka-Yehudayoff]

Theorem [Dvir-Shpilka-Yehudayoff]

Do lower bounds for low depth circuits imply deterministic
PIT for them ?

Lower bounds for low depth circuits imply deterministic
PIT for low depth circuits with bounded individual degree.

90

Randomness from hardness at low depth

Theorem [Chou-K-Solomon]
Super-polynomial lower bounds for low depth arithmetic
circuits for poly(log n) degree polynomials imply non-
trivial deterministic PIT for them.

91

Randomness from hardness at low depth

Theorem [Chou-K-Solomon]

Thus, we get rid of the low individual degree assumption
of Dvir et al. at the cost of asking for lower bounds for
low degree polynomials.

Super-polynomial lower bounds for low depth arithmetic
circuits for poly(log n) degree polynomials imply non-
trivial deterministic PIT for them.

92

Randomness from hardness at low depth

Theorem [Chou-K-Solomon]

Thus, we get rid of the low individual degree assumption
of Dvir et al. at the cost of asking for lower bounds for
low degree polynomials.

For depth k PIT, we need lower bounds for depth k+5
circuits, which as of now, renders this result unusable.

Super-polynomial lower bounds for low depth arithmetic
circuits for poly(log n) degree polynomials imply non-
trivial deterministic PIT for them.

93

Randomness from hardness for formulas

Theorem [Chou-K-Solomon]
An lower bound for (border of) formulas for a
constant degree polynomial implies sub-exponential PIT
for linear size formulas.

n2+✏

94

Randomness from hardness for formulas

Theorem [Chou-K-Solomon]
An lower bound for (border of) formulas for a
constant degree polynomial implies sub-exponential PIT
for linear size formulas.

n2+✏

Currently, we don’t even know non-trivial PIT for linear size
depth-4 formulas.

95

Randomness from hardness for formulas

Theorem [Chou-K-Solomon]
An lower bound for (border of) formulas for a
constant degree polynomial implies sub-exponential PIT
for linear size formulas.

n2+✏

Currently, we know lower bounds of this kind. n2�✏

Currently, we don’t even know non-trivial PIT for linear size
depth-4 formulas.

96

Randomness from hardness for formulas

Theorem [Chou-K-Solomon]
An lower bound for (border of) formulas for a
constant degree polynomial implies sub-exponential PIT
for linear size formulas.

n2+✏

Currently, we know lower bounds of this kind. n2�✏

Currently, we don’t even know non-trivial PIT for linear size
depth-4 formulas.

So, (seemingly) small improvement in the state of lower
bounds for formulas has extremely interesting
consequences for the PIT question.

97

To summarize

98

To summarize

• VNP (the algebraic analog of NP) is closed under taking
factors.

99

To summarize

• VNP (the algebraic analog of NP) is closed under taking
factors.

• Low (but growing) degree factors of small formulas, low depth
circuits have small formulas, low depth circuits respectively.

99

To summarize

• VNP (the algebraic analog of NP) is closed under taking
factors.

• Low (but growing) degree factors of small formulas, low depth
circuits have small formulas, low depth circuits respectively.

• Even somewhat non-trivial lower bounds for formulas, low
depth circuits imply sub exponential time deterministic
Identity Testing algorithms for them.

99

Snippets of the proof

100

Key lemma : structure of factors

101

Key lemma : structure of factors

 Lemma (informal)
Let P be an n-variate polynomial of degree D, which can be
computed by a size s circuit. Let f be a factor of P of
degree d.

102

Key lemma : structure of factors

 Lemma (informal)
Let P be an n-variate polynomial of degree D, which can be
computed by a size s circuit. Let f be a factor of P of
degree d.
Then, there exist polynomials whose
complexity is closely related to that of P

103

P1, P2, . . . , Pd

Key lemma : structure of factors

 Lemma (informal)
Let P be an n-variate polynomial of degree D, which can be
computed by a size s circuit. Let f be a factor of P of
degree d.
Then, there exist polynomials whose
complexity is closely related to that of P, and a d-variate
polynomial Q of degree d

104

P1, P2, . . . , Pd

Key lemma : structure of factors

 Lemma (informal)
Let P be an n-variate polynomial of degree D, which can be
computed by a size s circuit. Let f be a factor of P of
degree d.
Then, there exist polynomials whose
complexity is closely related to that of P, and a d-variate
polynomial Q of degree d which is computable by a size
poly(d) circuit

105

P1, P2, . . . , Pd

Key lemma : structure of factors

 Lemma (informal)
Let P be an n-variate polynomial of degree D, which can be
computed by a size s circuit. Let f be a factor of P of
degree d.
Then, there exist polynomials whose
complexity is closely related to that of P, and a d-variate
polynomial Q of degree d which is computable by a size
poly(d) circuit, such that .

106

P1, P2, . . . , Pd

f = Q (P1, P2, . . . , Pd)

Key lemma : structure of factors

 Lemma (informal)

‘Normal form’ for factors.

Let P be an n-variate polynomial of degree D, which can be
computed by a size s circuit. Let f be a factor of P of
degree d.
Then, there exist polynomials whose
complexity is closely related to that of P, and a d-variate
polynomial Q of degree d which is computable by a size
poly(d) circuit, such that .

107

P1, P2, . . . , Pd

f = Q (P1, P2, . . . , Pd)

Key lemma : structure of factors

 Lemma (informal)

‘Normal form’ for factors.

Would be helpful in arguing about their structure.

Let P be an n-variate polynomial of degree D, which can be
computed by a size s circuit. Let f be a factor of P of
degree d.
Then, there exist polynomials whose
complexity is closely related to that of P, and a d-variate
polynomial Q of degree d which is computable by a size
poly(d) circuit, such that .

108

P1, P2, . . . , Pd

f = Q (P1, P2, . . . , Pd)

Structure of factors
P, n-variate, degree D
size s circuit.

f, degree d factor of P.

109

Structure of factors

· · · · · ·

P, n-variate, degree D
size s circuit.

f, degree d factor of P.

P1 P2 PdPd�1

Q

d-variate

degree-d
size-poly(d)

f

110

f = Q(P1, P2, . . . , Pd)

Structure of factors

· · · · · ·

P, n-variate, degree D
size s circuit.

f, degree d factor of P.

P1 P2 PdPd�1

Q

d-variate

degree-d
size-poly(d)

f

111

f = Q(P1, P2, . . . , Pd)

size(Pi) = poly(s,D)

Structure of factors

· · · · · ·

P, n-variate, degree D
size s circuit.

f, degree d factor of P.

P1 P2 PdPd�1

Q

d-variate

degree-d
size-poly(d)

f

structure preserved

112

f = Q(P1, P2, . . . , Pd)

size(Pi) = poly(s,D)

Structure of factors

· · · · · ·

P, n-variate, degree D
size s circuit.

f, degree d factor of P.

P1 P2 PdPd�1

Q

d-variate

degree-d
size-poly(d)

f

structure preserved formula ! formula

VNP ! VNP

low depth ! low depth

113

f = Q(P1, P2, . . . , Pd)

size(Pi) = poly(s,D)

Factors of poly in VNP

· · · · · ·

P, n-variate, degree D
in VNP.

f, degree d factor of P.

P1 P2 PdPd�1

Q

d-variate

degree-d
size-poly(d)

f

114

f = Q(P1, P2, . . . , Pd)

Factors of poly in VNP

· · · · · ·

P, n-variate, degree D
in VNP.

f, degree d factor of P.

P1 P2 PdPd�1

Q

d-variate

degree-d
size-poly(d)

f

115

f = Q(P1, P2, . . . , Pd)

In VNP ->

Factors of poly in VNP

· · · · · ·

P, n-variate, degree D
in VNP.

f, degree d factor of P.

P1 P2 PdPd�1

Q

d-variate

degree-d
size-poly(d)

f

Theorem [Valiant]
Q(P1,P2, . . . ,Pd)If each is in VNP, then is in VNP. Pi

116

f = Q(P1, P2, . . . , Pd)

In VNP ->

Factors of poly in VNP

· · · · · ·

P, n-variate, degree D
in VNP.

f, degree d factor of P.

P1 P2 PdPd�1

Q

d-variate

degree-d
size-poly(d)

f

Theorem [Valiant]
Q(P1,P2, . . . ,Pd)If each is in VNP, then is in VNP. Pi

Thus, VNP is closed under taking factors.
117

f = Q(P1, P2, . . . , Pd)

In VNP ->

Factors of formulas

· · · · · ·

P, n-variate, degree D
has a size s formula.

f, degree d factor of P.

P1 P2 PdPd�1

Q

d-variate

degree-d
size-poly(d)

f

118

f = Q(P1, P2, . . . , Pd)

Factors of formulas

· · · · · ·

P, n-variate, degree D
has a size s formula.

f, degree d factor of P.

P1 P2 PdPd�1

Q

d-variate

degree-d
size-poly(d)

f

119

f = Q(P1, P2, . . . , Pd)

Formulas ->

Factors of formulas

· · · · · ·

P, n-variate, degree D
has a size s formula.

f, degree d factor of P.

P1 P2 PdPd�1

Q

d-variate

degree-d
size-poly(d)

f

Theorem [Valiant-Skyum-Berkowitz-Rackoff]
Q has a formula of size . dO(logd)

120

f = Q(P1, P2, . . . , Pd)

Formulas ->

Factors of formulas

· · · · · ·

P, n-variate, degree D
has a size s formula.

f, degree d factor of P.

P1 P2 PdPd�1

Q

d-variate

degree-d
size-poly(d)

f

Theorem [Valiant-Skyum-Berkowitz-Rackoff]
Q has a formula of size .
Take the formula for , and paste a formula for each at
the leaves.

dO(logd)

Q Pi

121

f = Q(P1, P2, . . . , Pd)

Formulas ->

Factors of formulas

· · · · · ·

P, n-variate, degree D
has a size s formula.

f, degree d factor of P.

P1 P2 PdPd�1

Q

d-variate

degree-d
size-poly(d)

f

Theorem [Valiant-Skyum-Berkowitz-Rackoff]
Q has a formula of size .
Take the formula for , and paste a formula for each at
the leaves.

dO(logd)

Pi

We get a formula for of size .f
122

f = Q(P1, P2, . . . , Pd)

dO(logd) · poly(n, s,D)

Formulas ->

Q

Factors of shallow ckts

· · · · · ·

P, n-variate, degree D
has a size s, depth-k
circuit.

f, degree d factor of P.

P1 P2 PdPd�1

Q

d-variate

degree-d
size-poly(d)

f

123

f = Q(P1, P2, . . . , Pd)

Factors of shallow ckts

· · · · · ·

P, n-variate, degree D
has a size s, depth-k
circuit.

f, degree d factor of P.

P1 P2 PdPd�1

Q

d-variate

degree-d
size-poly(d)

f

124

f = Q(P1, P2, . . . , Pd)

Depth k + 1
ckt ->

Factors of shallow ckts

· · · · · ·

P, n-variate, degree D
has a size s, depth-k
circuit.

f, degree d factor of P.

P1 P2 PdPd�1

Q

d-variate

degree-d
size-poly(d)

f

Theorem [Agrawal-Vinay, Tavenas]
Q has a depth 2c circuit of size . dO(d1/c)

125

f = Q(P1, P2, . . . , Pd)

Depth k + 1
ckt ->

Factors of shallow ckts

· · · · · ·

P, n-variate, degree D
has a size s, depth-k
circuit.

f, degree d factor of P.

P1 P2 PdPd�1

Q

d-variate

degree-d
size-poly(d)

f

Theorem [Agrawal-Vinay, Tavenas]
Q has a depth 2c circuit of size .
Take the shallow circuit for , and paste the shallow circuit
for each at the leaves.

Q

Pi

dO(d1/c)

126

f = Q(P1, P2, . . . , Pd)

Depth k + 1
ckt ->

Factors of shallow ckts

· · · · · ·

P, n-variate, degree r
has a size s, depth-k
circuit.

f, degree d factor of P.

P1 P2 PdPd�1

Q

d-variate

degree-d
size-poly(d)

f

Theorem [Agrawal-Vinay, Tavenas]
Q has a depth 2c circuit of size .
Take the shallow circuit for , and paste the shallow circuit
for each at the leaves.

Q

Pi

We get a circuit for of depth and size f

dO(d1/c)

127

f = Q(P1, P2, . . . , Pd)

dO(d✏) · poly(n, s,D)

Depth k + 1
ckt ->

k + 2c+O(1)

Proving the structural lemma

128

Structure of factors

· · · · · ·

P, n-variate, degree D
size s circuit.

f, degree d factor of P.

P1 P2 PdPd�1

Q

d-variate

degree-d
size-poly(d)

f

structure preserved formula ! formula

VNP ! VNP

low depth ! low depth

129

f = Q(P1, P2, . . . , Pd)

size(Pi) = poly(s,D)

Structure of roots

130

Structure of roots

The lemma for ‘roots’ of P.

131

Structure of roots

The lemma for ‘roots’ of P.
P (X1, X1, . . . , Xn�1, Y) size(P) = sdegree(P) = r

132

Structure of roots

The lemma for ‘roots’ of P.
P (X1, X1, . . . , Xn�1, Y)

f(X1, X1, . . . , Xn�1) P (X, f) = 0

size(P) = sdegree(P) = r

degree(f) = d

133

Structure of roots

The lemma for ‘roots’ of P.
P (X1, X1, . . . , Xn�1, Y)

f(X1, X1, . . . , Xn�1) P (X, f) = 0

size(P) = sdegree(P) = r

degree(f) = d

Q(P1, P2, . . . , Pd) = f degree(Q) = d size(Q) = poly(d)

134

Structure of roots

The lemma for ‘roots’ of P.

Preprocessing :

P (X1, X1, . . . , Xn�1, Y)

f(X1, X1, . . . , Xn�1) P (X, f) = 0

size(P) = sdegree(P) = r

degree(f) = d

Q(P1, P2, . . . , Pd) = f degree(Q) = d size(Q) = poly(d)

135

Structure of roots

The lemma for ‘roots’ of P.

Preprocessing :

P (X1, X1, . . . , Xn�1, Y)

f(X1, X1, . . . , Xn�1) P (X, f) = 0

size(P) = sdegree(P) = r

degree(f) = d

Q(P1, P2, . . . , Pd) = f degree(Q) = d size(Q) = poly(d)

@P

@y
(X, f) 6= 0

136

Structure of roots

The lemma for ‘roots’ of P.

Preprocessing :

Else, we work with a derivative of
P. They also have ‘small’ circuits.

P (X1, X1, . . . , Xn�1, Y)

f(X1, X1, . . . , Xn�1) P (X, f) = 0

size(P) = sdegree(P) = r

degree(f) = d

Q(P1, P2, . . . , Pd) = f degree(Q) = d size(Q) = poly(d)

@P

@y
(X, f) 6= 0

137

Structure of roots

The lemma for ‘roots’ of P.

Preprocessing :

Else, we work with a derivative of
P. They also have ‘small’ circuits.

P (X1, X1, . . . , Xn�1, Y)

f(X1, X1, . . . , Xn�1) P (X, f) = 0

size(P) = sdegree(P) = r

degree(f) = d

Q(P1, P2, . . . , Pd) = f degree(Q) = d size(Q) = poly(d)

@P

@y
(X, f) 6= 0

@P

@y
(0, f(0)) = � 6= 0

138

Structure of roots

The lemma for ‘roots’ of P.

Preprocessing :

Else, we work with a derivative of
P. They also have ‘small’ circuits.

P (X1, X1, . . . , Xn�1, Y)

f(X1, X1, . . . , Xn�1) P (X, f) = 0

size(P) = sdegree(P) = r

degree(f) = d

Q(P1, P2, . . . , Pd) = f degree(Q) = d size(Q) = poly(d)

@P

@y
(X, f) 6= 0

@P

@y
(0, f(0)) = � 6= 0 Else, we translate the origin to

ensure this.

139

Defining the generators

140

Defining the generators

P (X, f(0) + Y) = P (X, f(0)) + Y
@P

@Y
(X, f(0)) + · · ·+ Y r · 1

r!
· @

rP

@Y r
(X, f(0))

141

Defining the generators

P (X, f(0) + Y) = P (X, f(0)) + Y
@P

@Y
(X, f(0)) + · · ·+ Y r · 1

r!
· @

rP

@Y r
(X, f(0))

Pi(X) =
1

i!
· @

iP

@Y i
(X, f(0))� 1

i!
· @

iP

@Y i
(0, f(0))

142

Defining the generators

P (X, f(0) + Y) = P (X, f(0)) + Y
@P

@Y
(X, f(0)) + · · ·+ Y r · 1

r!
· @

rP

@Y r
(X, f(0))

Pi(X) =
1

i!
· @

iP

@Y i
(X, f(0))� 1

i!
· @

iP

@Y i
(0, f(0)) Pi(0) = 0

143

Defining the generators

P (X, f(0) + Y) = P (X, f(0)) + Y
@P

@Y
(X, f(0)) + · · ·+ Y r · 1

r!
· @

rP

@Y r
(X, f(0))

Pi(X) =
1

i!
· @

iP

@Y i
(X, f(0))� 1

i!
· @

iP

@Y i
(0, f(0))

P (X, f(0) + Y) = P (X, f(0)) + Y · (P1 + ↵1) + Y 2 · (P2 + ↵2) + · · ·+ Y r · (Pr + ↵r)

Pi(0) = 0

144

Pi(X) =
1

i!
· @

iP

@Y i
(X, f(0))� 1

i!
· @

iP

@Y i
(0, f(0))

Defining the generators

P (X, f(0) + Y) = P (X, f(0)) + Y
@P

@Y
(X, f(0)) + · · ·+ Y r · 1

r!
· @

rP

@Y r
(X, f(0))

P (X, f(0) + Y) = P (X, f(0)) + Y · (P1 + ↵1) + Y 2 · (P2 + ↵2) + · · ·+ Y r · (Pr + ↵r)

Pi(0) = 0

P (X, f(0) + Y) = P (X, f(0)) + Y · (P1 + �) + Y 2 · (P2 + ↵2) + · · ·+ Y r · (Pr + ↵r)

145

Constructing the root : Newton iteration

146

Constructing the root : Newton iteration

146

Constructing the root : Newton iteration

We construct the root iteratively.

146

Constructing the root : Newton iteration

We construct the root iteratively.

We start with the degree 0 term of the root.

146

Constructing the root : Newton iteration

We construct the root iteratively.

We start with the degree 0 term of the root.

At the end of iteration i, we will be able to recover the
homogeneous components of f of degree up to i.

146

Newton iteration : base case

147

Newton iteration : base case

148

P (X, f) = 0

Newton iteration : base case

149

P (X, f) = 0

Linear(P (X, f)) = 0

Newton iteration : base case

150

P (X, f) = 0

Linear(P (X, f)) = 0

Linear(P (X, f(0) + L)) = 0

L := homogeneous component of f of degree equal to 1

Newton iteration : base case

Base case : Getting a circuit for the linear term

P (X, f(0) + L) = P (X, f(0)) + L · (P1 + �) + L2 · (P2 + ↵2) + · · ·+ Lr · (Pr + ↵r)

151

Newton iteration : base case

Base case : Getting a circuit for the linear term

P (X, f(0) + L) = P (X, f(0)) + L · (P1 + �) + L2 · (P2 + ↵2) + · · ·+ Lr · (Pr + ↵r)

Linear (P (X, f(0) + L)) = 0

152

Newton iteration : base case

Base case : Getting a circuit for the linear term

P (X, f(0) + L) = P (X, f(0)) + L · (P1 + �) + L2 · (P2 + ↵2) + · · ·+ Lr · (Pr + ↵r)

Linear (P (X, f(0) + L)) = 0

Linear
�
P (X, f(0)) + L · (P1 + �) + L2 · (P2 + ↵2) + · · ·+ Lr · (Pr + ↵r))

�
= 0

153

Newton iteration : base case

Base case : Getting a circuit for the linear term

P (X, f(0) + L) = P (X, f(0)) + L · (P1 + �) + L2 · (P2 + ↵2) + · · ·+ Lr · (Pr + ↵r)

Linear (P (X, f(0) + L)) = 0

Linear
�
P (X, f(0)) + L · (P1 + �) + L2 · (P2 + ↵2) + · · ·+ Lr · (Pr + ↵r))

�
= 0

L : homogeneous degree 1

154

Newton iteration : base case

Base case : Getting a circuit for the linear term

P (X, f(0) + L) = P (X, f(0)) + L · (P1 + �) + L2 · (P2 + ↵2) + · · ·+ Lr · (Pr + ↵r)

Linear (P (X, f(0) + L)) = 0

Linear
�
P (X, f(0)) + L · (P1 + �) + L2 · (P2 + ↵2) + · · ·+ Lr · (Pr + ↵r))

�
= 0

L : homogeneous degree 1 8j > 1,Linear(Lj ·A) = 0

155

Newton iteration : base case

Base case : Getting a circuit for the linear term

P (X, f(0) + L) = P (X, f(0)) + L · (P1 + �) + L2 · (P2 + ↵2) + · · ·+ Lr · (Pr + ↵r)

Linear (P (X, f(0) + L)) = 0

Linear
�
P (X, f(0)) + L · (P1 + �) + L2 · (P2 + ↵2) + · · ·+ Lr · (Pr + ↵r))

�
= 0

L : homogeneous degree 1 8j > 1,Linear(Lj ·A) = 0

0 = Linear(P (X, f(0))) + L · Constant Term(P1 + �)

156

Newton iteration : base case

Base case : Getting a circuit for the linear term

P (X, f(0) + L) = P (X, f(0)) + L · (P1 + �) + L2 · (P2 + ↵2) + · · ·+ Lr · (Pr + ↵r)

Linear (P (X, f(0) + L)) = 0

Linear
�
P (X, f(0)) + L · (P1 + �) + L2 · (P2 + ↵2) + · · ·+ Lr · (Pr + ↵r))

�
= 0

L : homogeneous degree 1 8j > 1,Linear(Lj ·A) = 0

= Linear(P (X, f(0))) + L · �

0 = Linear(P (X, f(0))) + L · Constant Term(P1 + �)

157

Newton iteration : base case

Base case : Getting a circuit for the linear term

P (X, f(0) + L) = P (X, f(0)) + L · (P1 + �) + L2 · (P2 + ↵2) + · · ·+ Lr · (Pr + ↵r)

Linear (P (X, f(0) + L)) = 0

Linear
�
P (X, f(0)) + L · (P1 + �) + L2 · (P2 + ↵2) + · · ·+ Lr · (Pr + ↵r))

�
= 0

L : homogeneous degree 1 8j > 1,Linear(Lj ·A) = 0

= Linear(P (X, f(0))) + L · �

0 = Linear(P (X, f(0))) + L · Constant Term(P1 + �)

� 6= 0

158

Newton iteration : base case

Base case : Getting a circuit for the linear term

P (X, f(0) + L) = P (X, f(0)) + L · (P1 + �) + L2 · (P2 + ↵2) + · · ·+ Lr · (Pr + ↵r)

Linear (P (X, f(0) + L)) = 0

Linear
�
P (X, f(0)) + L · (P1 + �) + L2 · (P2 + ↵2) + · · ·+ Lr · (Pr + ↵r))

�
= 0

L : homogeneous degree 1 8j > 1,Linear(Lj ·A) = 0

= Linear(P (X, f(0))) + L · �

0 = Linear(P (X, f(0))) + L · Constant Term(P1 + �)

�1

�
· Linear(P (X, f(0))) = L

� 6= 0

159

Newton iteration : base case

Base case : Getting a circuit for the linear term

P (X, f(0) + L) = P (X, f(0)) + L · (P1 + �) + L2 · (P2 + ↵2) + · · ·+ Lr · (Pr + ↵r)

Linear (P (X, f(0) + L)) = 0

Linear
�
P (X, f(0)) + L · (P1 + �) + L2 · (P2 + ↵2) + · · ·+ Lr · (Pr + ↵r))

�
= 0

L : homogeneous degree 1 8j > 1,Linear(Lj ·A) = 0

= Linear(P (X, f(0))) + L · �

0 = Linear(P (X, f(0))) + L · Constant Term(P1 + �)

�1

�
· Linear(P (X, f(0))) = L f(0) + L = A1(P0)

� 6= 0

160

Newton iteration : base case

Base case : Getting a circuit for the linear term

P (X, f(0) + L) = P (X, f(0)) + L · (P1 + �) + L2 · (P2 + ↵2) + · · ·+ Lr · (Pr + ↵r)

Linear (P (X, f(0) + L)) = 0

Linear
�
P (X, f(0)) + L · (P1 + �) + L2 · (P2 + ↵2) + · · ·+ Lr · (Pr + ↵r))

�
= 0

L : homogeneous degree 1 8j > 1,Linear(Lj ·A) = 0

= Linear(P (X, f(0))) + L · �

0 = Linear(P (X, f(0))) + L · Constant Term(P1 + �)

�1

�
· Linear(P (X, f(0))) = L f(0) + L = A1(P0)

� 6= 0

161

Newton iteration : general case

162

Newton iteration : general case

At the end of step k-1 :

163

Newton iteration : general case

At the end of step k-1 :

h = Ak�1(P0, P1, P2, . . . , Pd)8j < k,Degj(f(0) + h) = Degj(f)

164

Newton iteration : general case

At the end of step k-1 :

h = Ak�1(P0, P1, P2, . . . , Pd)

h0 = Ak(P0, P1, P2, . . . , Pd)8j < k + 1,Degj(f(0) + h0) = Degj(f)

8j < k,Degj(f(0) + h) = Degj(f)

165

Newton iteration : general case

At the end of step k-1 :

h = Ak�1(P0, P1, P2, . . . , Pd)

h0 = Ak(P0, P1, P2, . . . , Pd)

Degk(P (x), f(0) + h+ (h0 � h)) = 0 h0 = h�Degk

✓
1

�
(P (X, f(0) + h))

◆

8j < k + 1,Degj(f(0) + h0) = Degj(f)

8j < k,Degj(f(0) + h) = Degj(f)

166

h0
= h+ monomials of degree k

Newton iteration : general case

At the end of step k-1 :

h = Ak�1(P0, P1, P2, . . . , Pd)

h0 = Ak(P0, P1, P2, . . . , Pd)

Degk(P (x), f(0) + h+ (h0 � h)) = 0 h0 = h�Degk

✓
1

�
(P (X, f(0) + h))

◆

P (X, f(0) + h) = P0 + P1 · h+ P2 · h2 + . . .+ Pr · hr

8j < k + 1,Degj(f(0) + h0) = Degj(f)

8j < k,Degj(f(0) + h) = Degj(f)

167

h0
= h+ monomials of degree k

Newton iteration : general case

At the end of step k-1 :

h = Ak�1(P0, P1, P2, . . . , Pd)

h0 = Ak(P0, P1, P2, . . . , Pd)

Degk(P (x), f(0) + h+ (h0 � h)) = 0 h0 = h�Degk

✓
1

�
(P (X, f(0) + h))

◆

P (X, f(0) + h) = P0 + P1 · h+ P2 · h2 + . . .+ Pr · hr

But, we are interested in monomials of degree at most d.

8j < k + 1,Degj(f(0) + h0) = Degj(f)

8j < k,Degj(f(0) + h) = Degj(f)

168

h0
= h+ monomials of degree k

Newton iteration : general case

At the end of step k-1 :

h = Ak�1(P0, P1, P2, . . . , Pd)

h0 = Ak(P0, P1, P2, . . . , Pd)

Degk(P (x), f(0) + h+ (h0 � h)) = 0 h0 = h�Degk

✓
1

�
(P (X, f(0) + h))

◆

P (X, f(0) + h) = P0 + P1 · h+ P2 · h2 + . . .+ Pr · hr

But, we are interested in monomials of degree at most d.

Degk (P (X, f(0) + h)) = Degk
�
P0 + P1 · h+ P2 · h2 + . . .+ Pk · hk

�

8j < k + 1,Degj(f(0) + h0) = Degj(f)

8j < k,Degj(f(0) + h) = Degj(f)

169

h0
= h+ monomials of degree k

Newton iteration : general case

At the end of step k-1 :

h = Ak�1(P0, P1, P2, . . . , Pd)

h0 = Ak(P0, P1, P2, . . . , Pd)

Degk(P (x), f(0) + h+ (h0 � h)) = 0 h0 = h�Degk

✓
1

�
(P (X, f(0) + h))

◆

P (X, f(0) + h) = P0 + P1 · h+ P2 · h2 + . . .+ Pr · hr

But, we are interested in monomials of degree at most d.

Degk (P (X, f(0) + h)) = Degk
�
P0 + P1 · h+ P2 · h2 + . . .+ Pk · hk

�

So, we never look beyond the first d terms. f is a function of
P0, P1, . . . , Pd

8j < k + 1,Degj(f(0) + h0) = Degj(f)

8j < k,Degj(f(0) + h) = Degj(f)

170

h0
= h+ monomials of degree k

The details we skipped

171

The details we skipped

•General factors, and not just roots

171

The details we skipped

•General factors, and not just roots

•The circuit complexity of the generators

171

The details we skipped

•General factors, and not just roots

•The circuit complexity of the generators

•The shape/depth of the circuit of the generators

171

The details we skipped

•General factors, and not just roots

•The circuit complexity of the generators

•The shape/depth of the circuit of the generators

•The degree of and circuit size of the ‘top level’ computation

171

The details we skipped

•General factors, and not just roots

•The circuit complexity of the generators

•The shape/depth of the circuit of the generators

•The degree of and circuit size of the ‘top level’ computation

•These can be addressed using some standard ideas
(interpolation, homogenization etc.)

171

Summary

172

Summary

• VNP is closed under taking factors.

172

Summary

• VNP is closed under taking factors.

• Low (but growing) degree factors of small formulas, low depth
circuits have small formulas, low depth circuits respectively.

172

Summary

• VNP is closed under taking factors.

• Low (but growing) degree factors of small formulas, low depth
circuits have small formulas, low depth circuits respectively.

• Even somewhat non-trivial lower bounds for formulas, low
depth circuits imply sub exponential time deterministic
Identity Testing algorithms for them.

172

Open problems

173

Open problems

Factors of formulas, low depth circuits : Are formula truly closed
under taking factors ? What about constant depth circuits ?

173

Open problems

Factors of formulas, low depth circuits : Are formula truly closed
under taking factors ? What about constant depth circuits ?

Factor conjecture [Kaltofen, Burgisser] : can a degree d factor of
a polynomial P with a size s circuit be computed by a circuit of
size poly(s,d) ? The current bounds look like poly(s, d, degree (P)),
and degree(P) could be superpoly(s).

173

Open problems

Factors of formulas, low depth circuits : Are formula truly closed
under taking factors ? What about constant depth circuits ?

Factor conjecture [Kaltofen, Burgisser] : can a degree d factor of
a polynomial P with a size s circuit be computed by a circuit of
size poly(s,d) ? The current bounds look like poly(s, d, degree (P)),
and degree(P) could be superpoly(s).

Arithmetic formula lower bounds : Proving better than Quadratic
lower bounds for arithmetic formula ? Resulting PIT applications ?

173

Open problems

Factors of formulas, low depth circuits : Are formula truly closed
under taking factors ? What about constant depth circuits ?

Factor conjecture [Kaltofen, Burgisser] : can a degree d factor of
a polynomial P with a size s circuit be computed by a circuit of
size poly(s,d) ? The current bounds look like poly(s, d, degree (P)),
and degree(P) could be superpoly(s).

Arithmetic formula lower bounds : Proving better than Quadratic
lower bounds for arithmetic formula ? Resulting PIT applications ?

174

Thank You!

