
joint work
with

Nitin Saxena
(IIT Kanpur)

14th Algorithmic

Number Theory Symposium

Ashish Dwivedi
(IIT Kanpur)

Computing Igusa’s local zeta function of univariates in
deterministic polynomial-time

�1

ANTS 2020

Introduction

�2

Introduction

�2

We are interested in computing certain function in this talk.

Introduction

�2

We are interested in computing certain function in this talk.

But, what do we really mean by computing a function?

Introduction

�2

We are interested in computing certain function in this talk.

But, what do we really mean by computing a function?

Often it means evaluating the function at certain points.

Introduction

�2

We are interested in computing certain function in this talk.

But, what do we really mean by computing a function?

Often it means evaluating the function at certain points.
Eg An exponential function: f(x,y)= 2x + 3y then f(1,3) = 29.

Introduction

�2

We are interested in computing certain function in this talk.

But, what do we really mean by computing a function?

Often it means evaluating the function at certain points.
Eg An exponential function: f(x,y)= 2x + 3y then f(1,3) = 29.
Or A polynomial function: f(x,y) = x2 + xy + 1 then f(1,-2) = 0.

Introduction

�2

We are interested in computing certain function in this talk.

But, what do we really mean by computing a function?

Often it means evaluating the function at certain points.
Eg An exponential function: f(x,y)= 2x + 3y then f(1,3) = 29.
Or A polynomial function: f(x,y) = x2 + xy + 1 then f(1,-2) = 0.

But these functions are nice explicit functions with finite description.

Introduction

�2

We are interested in computing certain function in this talk.

But, what do we really mean by computing a function?

Often it means evaluating the function at certain points.
Eg An exponential function: f(x,y)= 2x + 3y then f(1,3) = 29.
Or A polynomial function: f(x,y) = x2 + xy + 1 then f(1,-2) = 0.

But these functions are nice explicit functions with finite description.

Introduction

�2

We are interested in computing certain function in this talk.

But, what do we really mean by computing a function?

Often it means evaluating the function at certain points.
Eg An exponential function: f(x,y)= 2x + 3y then f(1,3) = 29.
Or A polynomial function: f(x,y) = x2 + xy + 1 then f(1,-2) = 0.

But these functions are nice explicit functions with finite description.

A generating function?

Introduction

�2

We are interested in computing certain function in this talk.

But, what do we really mean by computing a function?

Often it means evaluating the function at certain points.
Eg An exponential function: f(x,y)= 2x + 3y then f(1,3) = 29.
Or A polynomial function: f(x,y) = x2 + xy + 1 then f(1,-2) = 0.

But these functions are nice explicit functions with finite description.

A generating function?
Eg, f(t) = 1 + t + t2 + . . . encoding the sequence 1, 1, 1, 1, 1, 1, . . .

Introduction

�2

We are interested in computing certain function in this talk.

But, what do we really mean by computing a function?

Often it means evaluating the function at certain points.
Eg An exponential function: f(x,y)= 2x + 3y then f(1,3) = 29.
Or A polynomial function: f(x,y) = x2 + xy + 1 then f(1,-2) = 0.

But these functions are nice explicit functions with finite description.

A generating function?
Eg, f(t) = 1 + t + t2 + . . . encoding the sequence 1, 1, 1, 1, 1, 1, . . .
Or g(t) = 1 + 2t + 3t2 + . . . encoding the sequence 1, 2, 3, 4, 5, . . .

Introduction

�2

We are interested in computing certain function in this talk.

But, what do we really mean by computing a function?

Often it means evaluating the function at certain points.
Eg An exponential function: f(x,y)= 2x + 3y then f(1,3) = 29.
Or A polynomial function: f(x,y) = x2 + xy + 1 then f(1,-2) = 0.

But these functions are nice explicit functions with finite description.

A generating function?
Eg, f(t) = 1 + t + t2 + . . . encoding the sequence 1, 1, 1, 1, 1, 1, . . .
Or g(t) = 1 + 2t + 3t2 + . . . encoding the sequence 1, 2, 3, 4, 5, . . .

In such cases, it is interesting to know the rational form of the function

Introduction

�2

We are interested in computing certain function in this talk.

But, what do we really mean by computing a function?

Often it means evaluating the function at certain points.
Eg An exponential function: f(x,y)= 2x + 3y then f(1,3) = 29.
Or A polynomial function: f(x,y) = x2 + xy + 1 then f(1,-2) = 0.

But these functions are nice explicit functions with finite description.

A generating function?
Eg, f(t) = 1 + t + t2 + . . . encoding the sequence 1, 1, 1, 1, 1, 1, . . .
Or g(t) = 1 + 2t + 3t2 + . . . encoding the sequence 1, 2, 3, 4, 5, . . .

In such cases, it is interesting to know the rational form of the function
f(t)= 1/(1-t) for |t|<1 and g(t)= f(t)2.

Introduction

�3

Introduction

�3

Functions encoding other functions:

Introduction

�3

A generating function with coefficient as other functions!

Functions encoding other functions:

Introduction

�3

f(x,t) = g0(x) + g1(x)t + g2(x)t2 + . . .

A generating function with coefficient as other functions!

Functions encoding other functions:

Introduction

�3

Fns 1/(1-t) and 1/(1-t)2 are rational forms of two simple cases of this function.

f(x,t) = g0(x) + g1(x)t + g2(x)t2 + . . .

A generating function with coefficient as other functions!

Functions encoding other functions:

Introduction

�3

Computing rational form becomes highly non-trivial when g is implicit.

Fns 1/(1-t) and 1/(1-t)2 are rational forms of two simple cases of this function.

f(x,t) = g0(x) + g1(x)t + g2(x)t2 + . . .

A generating function with coefficient as other functions!

Functions encoding other functions:

Introduction

�3

An interesting example is Poincare series which encodes roots of a polynomial mod
prime-powers:

Computing rational form becomes highly non-trivial when g is implicit.

Fns 1/(1-t) and 1/(1-t)2 are rational forms of two simple cases of this function.

f(x,t) = g0(x) + g1(x)t + g2(x)t2 + . . .

A generating function with coefficient as other functions!

Functions encoding other functions:

Introduction

�3

Pf,p(t) :=
∞

∑
k=0

Nk(f)
pnk

tk

An interesting example is Poincare series which encodes roots of a polynomial mod
prime-powers:

Computing rational form becomes highly non-trivial when g is implicit.

Fns 1/(1-t) and 1/(1-t)2 are rational forms of two simple cases of this function.

f(x,t) = g0(x) + g1(x)t + g2(x)t2 + . . .

A generating function with coefficient as other functions!

Functions encoding other functions:

Introduction

�3

Pf,p(t) :=
∞

∑
k=0

Nk(f)
pnk

tk

f is polynomial in n variables with integer coefficients,

An interesting example is Poincare series which encodes roots of a polynomial mod
prime-powers:

Computing rational form becomes highly non-trivial when g is implicit.

Fns 1/(1-t) and 1/(1-t)2 are rational forms of two simple cases of this function.

f(x,t) = g0(x) + g1(x)t + g2(x)t2 + . . .

A generating function with coefficient as other functions!

Functions encoding other functions:

Introduction

�3

Pf,p(t) :=
∞

∑
k=0

Nk(f)
pnk

tk

f is polynomial in n variables with integer coefficients,
p is a prime and Nk(f) = number of zeros of f modulo pk.

An interesting example is Poincare series which encodes roots of a polynomial mod
prime-powers:

Computing rational form becomes highly non-trivial when g is implicit.

Fns 1/(1-t) and 1/(1-t)2 are rational forms of two simple cases of this function.

f(x,t) = g0(x) + g1(x)t + g2(x)t2 + . . .

A generating function with coefficient as other functions!

Functions encoding other functions:

Introduction

�3

Pf,p(t) :=
∞

∑
k=0

Nk(f)
pnk

tk

f is polynomial in n variables with integer coefficients,
p is a prime and Nk(f) = number of zeros of f modulo pk.

We will be interested in computing rational form of this function in this talk!

An interesting example is Poincare series which encodes roots of a polynomial mod
prime-powers:

Computing rational form becomes highly non-trivial when g is implicit.

Fns 1/(1-t) and 1/(1-t)2 are rational forms of two simple cases of this function.

f(x,t) = g0(x) + g1(x)t + g2(x)t2 + . . .

A generating function with coefficient as other functions!

Functions encoding other functions:

Zeta Functions

Zeta Functions

�4

Zeta functions are one of the most important class of functions which encode the
counts of objects encompassing some mathematical structure.

Zeta Functions

�4

Zeta functions are one of the most important class of functions which encode the
counts of objects encompassing some mathematical structure.

Very likely these zeta fns posses special analytic and algebraic properties.

Zeta Functions

�4

Zeta functions are one of the most important class of functions which encode the
counts of objects encompassing some mathematical structure.

Very likely these zeta fns posses special analytic and algebraic properties.

Which reveals striking information about the encoded objects (hidden otherwise).

Zeta Functions

�4

Zeta functions are one of the most important class of functions which encode the
counts of objects encompassing some mathematical structure.

Very likely these zeta fns posses special analytic and algebraic properties.

Which reveals striking information about the encoded objects (hidden otherwise).

This makes them extremely interesting and often drives whole new area of maths.

Zeta Functions

�4

Zeta functions are one of the most important class of functions which encode the
counts of objects encompassing some mathematical structure.

Very likely these zeta fns posses special analytic and algebraic properties.

Which reveals striking information about the encoded objects (hidden otherwise).

This makes them extremely interesting and often drives whole new area of maths.

Applications (everywhere): Computer science, Crypto, Number theory, Data science,

Zeta Functions

�4

Zeta functions are one of the most important class of functions which encode the
counts of objects encompassing some mathematical structure.

Very likely these zeta fns posses special analytic and algebraic properties.

Which reveals striking information about the encoded objects (hidden otherwise).

This makes them extremely interesting and often drives whole new area of maths.

Applications (everywhere): Computer science, Crypto, Number theory, Data science,
 Black-holes.

Zeta Functions

�4

Zeta functions are one of the most important class of functions which encode the
counts of objects encompassing some mathematical structure.

Very likely these zeta fns posses special analytic and algebraic properties.

Which reveals striking information about the encoded objects (hidden otherwise).

This makes them extremely interesting and often drives whole new area of maths.

Applications (everywhere): Computer science, Crypto, Number theory, Data science,
 Black-holes.

Eg, The very first zeta function— Euler-Riemann [1859] zeta function.

Zeta Functions

�4

Zeta functions are one of the most important class of functions which encode the
counts of objects encompassing some mathematical structure.

Very likely these zeta fns posses special analytic and algebraic properties.

Which reveals striking information about the encoded objects (hidden otherwise).

This makes them extremely interesting and often drives whole new area of maths.

Applications (everywhere): Computer science, Crypto, Number theory, Data science,
 Black-holes.

Eg, The very first zeta function— Euler-Riemann [1859] zeta function.

ζ(s) =
∞

∑
n=1

1
ns

Zeta Functions

�4

Zeta functions are one of the most important class of functions which encode the
counts of objects encompassing some mathematical structure.

Very likely these zeta fns posses special analytic and algebraic properties.

Which reveals striking information about the encoded objects (hidden otherwise).

This makes them extremely interesting and often drives whole new area of maths.

Applications (everywhere): Computer science, Crypto, Number theory, Data science,
 Black-holes.

Eg, The very first zeta function— Euler-Riemann [1859] zeta function.

 where s is a complex number with Re(s)>1.
ζ(s) =

∞

∑
n=1

1
ns

Zeta Functions

�4

Zeta functions are one of the most important class of functions which encode the
counts of objects encompassing some mathematical structure.

Very likely these zeta fns posses special analytic and algebraic properties.

Which reveals striking information about the encoded objects (hidden otherwise).

This makes them extremely interesting and often drives whole new area of maths.

Applications (everywhere): Computer science, Crypto, Number theory, Data science,
 Black-holes.

Eg, The very first zeta function— Euler-Riemann [1859] zeta function.

 where s is a complex number with Re(s)>1.

 encodes the distribution of prime numbers.
ζ(s) =

∞

∑
n=1

1
ns

Igusa Zeta Function

�5

Igusa Zeta Function

Other zeta functions can be defined

�5

Igusa Zeta Function

Other zeta functions can be defined Local

�5

Igusa Zeta Function

Other zeta functions can be defined associated to a particular prime p.Local

�5

Igusa Zeta Function

Count of zeros of system of polynomial equations

 in finite fields of char p.

Other zeta functions can be defined associated to a particular prime p.Local

�5

Igusa Zeta Function

Count of zeros of system of polynomial equations

 in finite fields of char p.

Hasse-Weil Zeta Fn:

Other zeta functions can be defined associated to a particular prime p.Local

�5

Igusa Zeta Function

Count of zeros of system of polynomial equations

 in finite fields of char p.

Hasse-Weil Zeta Fn:

Igusa’s local zeta function:

Other zeta functions can be defined associated to a particular prime p.Local

�5

Igusa Zeta Function

Count of zeros of system of polynomial equations

 in finite fields of char p.

Hasse-Weil Zeta Fn:

Igusa’s local zeta function:

Other zeta functions can be defined associated to a particular prime p.Local

Given an n-variate polynomial f with integer coefficients and a prime p.

�5

Igusa Zeta Function

Count of zeros of system of polynomial equations

 in finite fields of char p.

Hasse-Weil Zeta Fn:

Encodes count of zeros of polynomial f modulo prime powers pk.

Igusa’s local zeta function:

Other zeta functions can be defined associated to a particular prime p.Local

Given an n-variate polynomial f with integer coefficients and a prime p.

�5

Igusa Zeta Function

Count of zeros of system of polynomial equations

 in finite fields of char p.

Hasse-Weil Zeta Fn:

Encodes count of zeros of polynomial f modulo prime powers pk.

Igusa’s local zeta function:

Other zeta functions can be defined associated to a particular prime p.Local

Given an n-variate polynomial f with integer coefficients and a prime p.

Zf,p(s) = ∫ℤn
p

| f(x) |s
p |dx |

�5

Igusa Zeta Function

Count of zeros of system of polynomial equations

 in finite fields of char p.

Hasse-Weil Zeta Fn:

Encodes count of zeros of polynomial f modulo prime powers pk.

Igusa’s local zeta function:

Other zeta functions can be defined associated to a particular prime p.Local

Given an n-variate polynomial f with integer coefficients and a prime p.

Zf,p(s) = ∫ℤn
p

| f(x) |s
p |dx |

 p-adic integers

 s is complex

 Re(s)>0

ℤp

�5

Igusa Zeta Function

Count of zeros of system of polynomial equations

 in finite fields of char p.

Hasse-Weil Zeta Fn:

Encodes count of zeros of polynomial f modulo prime powers pk.

Igusa’s local zeta function:

Other zeta functions can be defined associated to a particular prime p.Local

Given an n-variate polynomial f with integer coefficients and a prime p.

The original definition is not important

Zf,p(s) = ∫ℤn
p

| f(x) |s
p |dx |

 p-adic integers

 s is complex

 Re(s)>0

ℤp

�5

Igusa Zeta Function

Count of zeros of system of polynomial equations

 in finite fields of char p.

Hasse-Weil Zeta Fn:

Encodes count of zeros of polynomial f modulo prime powers pk.

Igusa’s local zeta function:

Other zeta functions can be defined associated to a particular prime p.Local

Given an n-variate polynomial f with integer coefficients and a prime p.

The original definition is not important

Zf,p(s) = ∫ℤn
p

| f(x) |s
p |dx |

 p-adic integers

 s is complex

 Re(s)>0

ℤp

 is a rational function [Igusa’70s]Zf,p(s)

�5

Igusa Zeta Function

Count of zeros of system of polynomial equations

 in finite fields of char p.

Hasse-Weil Zeta Fn:

Encodes count of zeros of polynomial f modulo prime powers pk.

Igusa’s local zeta function:

Other zeta functions can be defined associated to a particular prime p.Local

Given an n-variate polynomial f with integer coefficients and a prime p.

The original definition is not important

Zf,p(s) = ∫ℤn
p

| f(x) |s
p |dx |

 p-adic integers

 s is complex

 Re(s)>0

ℤp

 is a rational function [Igusa’70s]Zf,p(s)

Poincare

 series
 Pf,p(t) :=

∞

∑
k=0

Nk(f)
pnk

tk

�5

Igusa Zeta Function

Count of zeros of system of polynomial equations

 in finite fields of char p.

Hasse-Weil Zeta Fn:

Encodes count of zeros of polynomial f modulo prime powers pk.

Igusa’s local zeta function:

Other zeta functions can be defined associated to a particular prime p.Local

Given an n-variate polynomial f with integer coefficients and a prime p.

The original definition is not important

Zf,p(s) = ∫ℤn
p

| f(x) |s
p |dx |

 p-adic integers

 s is complex

 Re(s)>0

ℤp

 is a rational function [Igusa’70s]Zf,p(s)

Poincare

 series
 Pf,p(t) :=

∞

∑
k=0

Nk(f)
pnk

tk

�5

Pf,p(t) =
1 − t . Zf,p(s)

1 − t
; t = p−s

Igusa Zeta Function

Count of zeros of system of polynomial equations

 in finite fields of char p.

Hasse-Weil Zeta Fn:

Encodes count of zeros of polynomial f modulo prime powers pk.

Igusa’s local zeta function:

Other zeta functions can be defined associated to a particular prime p.Local

Given an n-variate polynomial f with integer coefficients and a prime p.

The original definition is not important

Zf,p(s) = ∫ℤn
p

| f(x) |s
p |dx |

 p-adic integers

 s is complex

 Re(s)>0

ℤp

 is a rational function [Igusa’70s]Zf,p(s)

 Computing boils down to compute rational form of poincare series .Zf,p(s) P(t)

Poincare

 series
 Pf,p(t) :=

∞

∑
k=0

Nk(f)
pnk

tk

�5

Pf,p(t) =
1 − t . Zf,p(s)

1 − t
; t = p−s

The Problem

�6

The Problem

�6

Various methods developed to compute IZF for special family of polynomials.

The Problem

�6

Stationary Phase Formula

Various methods developed to compute IZF for special family of polynomials.

The Problem

�6

Stationary Phase Formula

Various methods developed to compute IZF for special family of polynomials.

Newton polygon method

The Problem

�6

Stationary Phase Formula

Various methods developed to compute IZF for special family of polynomials.

Newton polygon method Resolution of Singularities

The Problem

�6

Not much said about their algorithmic aspect.

Stationary Phase Formula

Various methods developed to compute IZF for special family of polynomials.

Newton polygon method Resolution of Singularities

The Problem

�6

Not much said about their algorithmic aspect.

Stationary Phase Formula

Various methods developed to compute IZF for special family of polynomials.

Newton polygon method Resolution of Singularities

Known methods are impractical.

The Problem

�6

Not much said about their algorithmic aspect.

Stationary Phase Formula

Various methods developed to compute IZF for special family of polynomials.

Newton polygon method Resolution of Singularities

Indeed, counting roots of n-variable poly in finite fields is already NP-Hard.

Known methods are impractical.

The Problem

�6

Not much said about their algorithmic aspect.

Stationary Phase Formula

Various methods developed to compute IZF for special family of polynomials.

Newton polygon method Resolution of Singularities

Indeed, counting roots of n-variable poly in finite fields is already NP-Hard.

Known methods are impractical.

Univariate Polynomials:

The Problem

�6

Not much said about their algorithmic aspect.

Stationary Phase Formula

Various methods developed to compute IZF for special family of polynomials.

Newton polygon method Resolution of Singularities

Indeed, counting roots of n-variable poly in finite fields is already NP-Hard.

Better algorithms?

Known methods are impractical.

Univariate Polynomials:

The Problem

�6

Not much said about their algorithmic aspect.

Stationary Phase Formula

Various methods developed to compute IZF for special family of polynomials.

Newton polygon method Resolution of Singularities

Indeed, counting roots of n-variable poly in finite fields is already NP-Hard.

Better algorithms?

Known methods are impractical.

Simple rationality proof?Univariate Polynomials:

The Problem

�6

Not much said about their algorithmic aspect.

Stationary Phase Formula

Various methods developed to compute IZF for special family of polynomials.

Newton polygon method Resolution of Singularities

Indeed, counting roots of n-variable poly in finite fields is already NP-Hard.

Better algorithms?

Input: Given 1-variable polynomial f(x) with integer coefficients and a prime p.

Known methods are impractical.

Simple rationality proof?Univariate Polynomials:

The Problem

�6

Not much said about their algorithmic aspect.

Stationary Phase Formula

Various methods developed to compute IZF for special family of polynomials.

Newton polygon method Resolution of Singularities

Indeed, counting roots of n-variable poly in finite fields is already NP-Hard.

Better algorithms?

Input: Given 1-variable polynomial f(x) with integer coefficients and a prime p.

Known methods are impractical.

Simple rationality proof?Univariate Polynomials:

Output: Efficiently compute the associated Poincare series P(t)=A(t)/B(t) for
univariate polynomials A(t) and B(t) over rationals and t = p-s.

The Problem

�6

Not much said about their algorithmic aspect.

Stationary Phase Formula

Various methods developed to compute IZF for special family of polynomials.

Newton polygon method Resolution of Singularities

Indeed, counting roots of n-variable poly in finite fields is already NP-Hard.

Better algorithms?

Input: Given 1-variable polynomial f(x) with integer coefficients and a prime p.

Related to univariate root-counting mod pk.

Known methods are impractical.

Simple rationality proof?Univariate Polynomials:

Output: Efficiently compute the associated Poincare series P(t)=A(t)/B(t) for
univariate polynomials A(t) and B(t) over rationals and t = p-s.

The Problem

�6

Not much said about their algorithmic aspect.

Stationary Phase Formula

Various methods developed to compute IZF for special family of polynomials.

Newton polygon method Resolution of Singularities

Indeed, counting roots of n-variable poly in finite fields is already NP-Hard.

Better algorithms?

Input: Given 1-variable polynomial f(x) with integer coefficients and a prime p.

Related to univariate root-counting mod pk. Coding theory, Crypto, Factoring etc.

Known methods are impractical.

Simple rationality proof?Univariate Polynomials:

Output: Efficiently compute the associated Poincare series P(t)=A(t)/B(t) for
univariate polynomials A(t) and B(t) over rationals and t = p-s.

The Problem

�6

Not much said about their algorithmic aspect.

Stationary Phase Formula

Various methods developed to compute IZF for special family of polynomials.

Newton polygon method Resolution of Singularities

Indeed, counting roots of n-variable poly in finite fields is already NP-Hard.

Better algorithms?

Input: Given 1-variable polynomial f(x) with integer coefficients and a prime p.

Related to univariate root-counting mod pk. Coding theory, Crypto, Factoring etc.
Recently [DMS19] computed Nk(f) in det poly-time.

Known methods are impractical.

Simple rationality proof?Univariate Polynomials:

Output: Efficiently compute the associated Poincare series P(t)=A(t)/B(t) for
univariate polynomials A(t) and B(t) over rationals and t = p-s.

The Problem

�6

Not much said about their algorithmic aspect.

Stationary Phase Formula

Various methods developed to compute IZF for special family of polynomials.

Newton polygon method Resolution of Singularities

Indeed, counting roots of n-variable poly in finite fields is already NP-Hard.

Better algorithms?

Input: Given 1-variable polynomial f(x) with integer coefficients and a prime p.

Related to univariate root-counting mod pk. Coding theory, Crypto, Factoring etc.
Recently [DMS19] computed Nk(f) in det poly-time.

Known methods are impractical.

Simple rationality proof?Univariate Polynomials:

Output: Efficiently compute the associated Poincare series P(t)=A(t)/B(t) for
univariate polynomials A(t) and B(t) over rationals and t = p-s.

Question: Can we find expression for Nk(f) if it exists?

Our Results

�7

Our Results

�7

Given an integral univariate f(x)

Our Results

�7

Given an integral univariate degree f(x) ≤ d

Our Results

�7

Given an integral univariate degree f(x) ≤ d coeff. at most C

Our Results

�7

Given an integral univariate degree f(x) ≤ d coeff. at most prime C p

Our Results

�7

We give first deterministic poly-time algorithm to compute associated Poincare series

Given an integral univariate degree f(x) ≤ d coeff. at most prime C p

Our Results

�7

We give first deterministic poly-time algorithm to compute associated Poincare series

Given an integral univariate degree f(x) ≤ d coeff. at most prime C p

P(t) = N0(f) +
N1(f)

p
t +

N2(f)
p2

t2 + ⋅ ⋅ ⋅ ∞

Our Results

�7

We give first deterministic poly-time algorithm to compute associated Poincare series

Given an integral univariate degree f(x) ≤ d coeff. at most prime C p

where is the number of zeros of mod with, Nk(f) f(x) pk

P(t) = N0(f) +
N1(f)

p
t +

N2(f)
p2

t2 + ⋅ ⋅ ⋅ ∞

Our Results

�7

We give first deterministic poly-time algorithm to compute associated Poincare series

Given an integral univariate degree f(x) ≤ d coeff. at most prime C p

where is the number of zeros of mod with, Nk(f) f(x) pk

P(t) =
A(t)
B(t)

; t = p−s

P(t) = N0(f) +
N1(f)

p
t +

N2(f)
p2

t2 + ⋅ ⋅ ⋅ ∞

Our Results

�7

We give first deterministic poly-time algorithm to compute associated Poincare series

Given an integral univariate degree f(x) ≤ d coeff. at most prime C p

where is the number of zeros of mod with, Nk(f) f(x) pk

P(t) =
A(t)
B(t)

; t = p−s deg(A) = Õ(d2)
deg(B) = O(d)

P(t) = N0(f) +
N1(f)

p
t +

N2(f)
p2

t2 + ⋅ ⋅ ⋅ ∞

Our Results

�7

We give first deterministic poly-time algorithm to compute associated Poincare series

Given an integral univariate degree f(x) ≤ d coeff. at most prime C p

where is the number of zeros of mod with, Nk(f) f(x) pk

P(t) =
A(t)
B(t)

; t = p−s deg(A) = Õ(d2)
deg(B) = O(d)

P(t) = N0(f) +
N1(f)

p
t +

N2(f)
p2

t2 + ⋅ ⋅ ⋅ ∞

We also give the proof of rationality of P(t) by first principles.

Our Results

�7

We give first deterministic poly-time algorithm to compute associated Poincare series

Zuniga-Galindo’03 gave a det poly-time algo

Given an integral univariate degree f(x) ≤ d coeff. at most prime C p

where is the number of zeros of mod with, Nk(f) f(x) pk

P(t) =
A(t)
B(t)

; t = p−s deg(A) = Õ(d2)
deg(B) = O(d)

P(t) = N0(f) +
N1(f)

p
t +

N2(f)
p2

t2 + ⋅ ⋅ ⋅ ∞

We also give the proof of rationality of P(t) by first principles.

Our Results

�7

We give first deterministic poly-time algorithm to compute associated Poincare series

Zuniga-Galindo’03 gave a det poly-time algo when f completely splits over rationals

Given an integral univariate degree f(x) ≤ d coeff. at most prime C p

where is the number of zeros of mod with, Nk(f) f(x) pk

P(t) =
A(t)
B(t)

; t = p−s deg(A) = Õ(d2)
deg(B) = O(d)

P(t) = N0(f) +
N1(f)

p
t +

N2(f)
p2

t2 + ⋅ ⋅ ⋅ ∞

We also give the proof of rationality of P(t) by first principles.

Our Results

�7

We give first deterministic poly-time algorithm to compute associated Poincare series

Zuniga-Galindo’03 gave a det poly-time algo when f completely splits over rationals

Our algo makes no such assumptions

Given an integral univariate degree f(x) ≤ d coeff. at most prime C p

where is the number of zeros of mod with, Nk(f) f(x) pk

P(t) =
A(t)
B(t)

; t = p−s deg(A) = Õ(d2)
deg(B) = O(d)

P(t) = N0(f) +
N1(f)

p
t +

N2(f)
p2

t2 + ⋅ ⋅ ⋅ ∞

We also give the proof of rationality of P(t) by first principles.

Our Results

�7

We give first deterministic poly-time algorithm to compute associated Poincare series

Zuniga-Galindo’03 gave a det poly-time algo when f completely splits over rationals

Our algo makes no such assumptions also works for f is defined over .

Given an integral univariate degree f(x) ≤ d coeff. at most prime C p

where is the number of zeros of mod with, Nk(f) f(x) pk

P(t) =
A(t)
B(t)

; t = p−s deg(A) = Õ(d2)
deg(B) = O(d)

ℤp

P(t) = N0(f) +
N1(f)

p
t +

N2(f)
p2

t2 + ⋅ ⋅ ⋅ ∞

We also give the proof of rationality of P(t) by first principles.

Our Results

�7

We give first deterministic poly-time algorithm to compute associated Poincare series

A closed form expression for for univariate f.

Zuniga-Galindo’03 gave a det poly-time algo when f completely splits over rationals

Our algo makes no such assumptions also works for f is defined over .

Given an integral univariate degree f(x) ≤ d coeff. at most prime C p

where is the number of zeros of mod with, Nk(f) f(x) pk

P(t) =
A(t)
B(t)

; t = p−s deg(A) = Õ(d2)
deg(B) = O(d)

ℤp

P(t) = N0(f) +
N1(f)

p
t +

N2(f)
p2

t2 + ⋅ ⋅ ⋅ ∞

Nk(f)

We also give the proof of rationality of P(t) by first principles.

Our Results

�7

We give first deterministic poly-time algorithm to compute associated Poincare series

A closed form expression for for univariate f.

Zuniga-Galindo’03 gave a det poly-time algo when f completely splits over rationals

Our algo makes no such assumptions also works for f is defined over .

Given an integral univariate degree f(x) ≤ d coeff. at most prime C p

where is the number of zeros of mod with, Nk(f) f(x) pk

P(t) =
A(t)
B(t)

; t = p−s deg(A) = Õ(d2)
deg(B) = O(d)

ℤp

P(t) = N0(f) +
N1(f)

p
t +

N2(f)
p2

t2 + ⋅ ⋅ ⋅ ∞

Nk(f)

Corollary: If f is radical, is constant for large enough k.Nk(f)

We also give the proof of rationality of P(t) by first principles.

Proof Idea

�8

Proof Idea

�8

Difficulty in computing the poincare series

Proof Idea

�8

Difficulty in computing the poincare series

P(t) = N0(f) +
N1(f)

p
t +

N2(f)
p2

t2 + ⋅ ⋅ ⋅ ∞

Proof Idea

�8

Difficulty in computing the poincare series

Definition of Nk(f) is implicit.P(t) = N0(f) +
N1(f)

p
t +

N2(f)
p2

t2 + ⋅ ⋅ ⋅ ∞

Proof Idea

�8

Difficulty in computing the poincare series

Definition of Nk(f) is implicit.

[DMS19] algo for computing Nk(f) is not enough.

P(t) = N0(f) +
N1(f)

p
t +

N2(f)
p2

t2 + ⋅ ⋅ ⋅ ∞

Proof Idea

�8

Difficulty in computing the poincare series

Definition of Nk(f) is implicit.

[DMS19] algo for computing Nk(f) is not enough.

P(t) = N0(f) +
N1(f)

p
t +

N2(f)
p2

t2 + ⋅ ⋅ ⋅ ∞

Too many terms!

Proof Idea

�8

Difficulty in computing the poincare series

Definition of Nk(f) is implicit.

[DMS19] algo for computing Nk(f) is not enough.

P(t) = N0(f) +
N1(f)

p
t +

N2(f)
p2

t2 + ⋅ ⋅ ⋅ ∞

Too many terms!

What if Nk(f) has nice explicit expression?

Proof Idea

�8

Difficulty in computing the poincare series

Definition of Nk(f) is implicit.

[DMS19] algo for computing Nk(f) is not enough.

P(t) = N0(f) +
N1(f)

p
t +

N2(f)
p2

t2 + ⋅ ⋅ ⋅ ∞

Too many terms!

What if Nk(f) has nice explicit expression? Say Nk(f) = pk-1 ?

Proof Idea

�8

Difficulty in computing the poincare series

Definition of Nk(f) is implicit.

[DMS19] algo for computing Nk(f) is not enough.

P(t) = N0(f) +
N1(f)

p
t +

N2(f)
p2

t2 + ⋅ ⋅ ⋅ ∞

Too many terms!

What if Nk(f) has nice explicit expression? Say Nk(f) = pk-1 ?

P(t) = 1 +
t
p

+
t2

p2
+ ⋅ ⋅ ⋅ ∞

Proof Idea

�8

Difficulty in computing the poincare series

Definition of Nk(f) is implicit.

[DMS19] algo for computing Nk(f) is not enough.

P(t) = N0(f) +
N1(f)

p
t +

N2(f)
p2

t2 + ⋅ ⋅ ⋅ ∞

Too many terms!

What if Nk(f) has nice explicit expression? Say Nk(f) = pk-1 ?

P(t) = 1 +
t
p

+
t2

p2
+ ⋅ ⋅ ⋅ ∞

Proof Idea

�8

Difficulty in computing the poincare series

Definition of Nk(f) is implicit.

[DMS19] algo for computing Nk(f) is not enough.

P(t) = N0(f) +
N1(f)

p
t +

N2(f)
p2

t2 + ⋅ ⋅ ⋅ ∞

Too many terms!

What if Nk(f) has nice explicit expression? Say Nk(f) = pk-1 ?

P(t) = 1 +
t
p

+
t2

p2
+ ⋅ ⋅ ⋅ ∞ P(t) =

1
1 − t/p

Proof Idea

�8

Difficulty in computing the poincare series

Definition of Nk(f) is implicit.

[DMS19] algo for computing Nk(f) is not enough.

Our proof goes via computing closed form expression for Nk(f) when k>=k0.

P(t) = N0(f) +
N1(f)

p
t +

N2(f)
p2

t2 + ⋅ ⋅ ⋅ ∞

Too many terms!

What if Nk(f) has nice explicit expression? Say Nk(f) = pk-1 ?

P(t) = 1 +
t
p

+
t2

p2
+ ⋅ ⋅ ⋅ ∞ P(t) =

1
1 − t/p

Proof Idea

�8

Difficulty in computing the poincare series

Definition of Nk(f) is implicit.

[DMS19] algo for computing Nk(f) is not enough.

Our proof goes via computing closed form expression for Nk(f) when k>=k0.

P(t) = N0(f) +
N1(f)

p
t +

N2(f)
p2

t2 + ⋅ ⋅ ⋅ ∞

Nk(f) =
n

∑
i=1

pk−⌈ k − vi
ei

⌉

Too many terms!

What if Nk(f) has nice explicit expression? Say Nk(f) = pk-1 ?

P(t) = 1 +
t
p

+
t2

p2
+ ⋅ ⋅ ⋅ ∞ P(t) =

1
1 − t/p

Proof Idea

�8

Difficulty in computing the poincare series

Definition of Nk(f) is implicit.

[DMS19] algo for computing Nk(f) is not enough.

Our proof goes via computing closed form expression for Nk(f) when k>=k0.

P(t) = N0(f) +
N1(f)

p
t +

N2(f)
p2

t2 + ⋅ ⋅ ⋅ ∞

n = # distinct roots of f.

Nk(f) =
n

∑
i=1

pk−⌈ k − vi
ei

⌉

Too many terms!

ℤp

What if Nk(f) has nice explicit expression? Say Nk(f) = pk-1 ?

P(t) = 1 +
t
p

+
t2

p2
+ ⋅ ⋅ ⋅ ∞ P(t) =

1
1 − t/p

Proof Idea

�8

Difficulty in computing the poincare series

Definition of Nk(f) is implicit.

[DMS19] algo for computing Nk(f) is not enough.

Our proof goes via computing closed form expression for Nk(f) when k>=k0.

P(t) = N0(f) +
N1(f)

p
t +

N2(f)
p2

t2 + ⋅ ⋅ ⋅ ∞

n = # distinct roots of f. ei = multiplicity,

Nk(f) =
n

∑
i=1

pk−⌈ k − vi
ei

⌉

Too many terms!

ℤp

What if Nk(f) has nice explicit expression? Say Nk(f) = pk-1 ?

P(t) = 1 +
t
p

+
t2

p2
+ ⋅ ⋅ ⋅ ∞ P(t) =

1
1 − t/p

Proof Idea

�8

Difficulty in computing the poincare series

Definition of Nk(f) is implicit.

[DMS19] algo for computing Nk(f) is not enough.

Our proof goes via computing closed form expression for Nk(f) when k>=k0.

P(t) = N0(f) +
N1(f)

p
t +

N2(f)
p2

t2 + ⋅ ⋅ ⋅ ∞

n = # distinct roots of f. ei = multiplicity, and vi = constant

Nk(f) =
n

∑
i=1

pk−⌈ k − vi
ei

⌉

Too many terms!

ℤp

What if Nk(f) has nice explicit expression? Say Nk(f) = pk-1 ?

P(t) = 1 +
t
p

+
t2

p2
+ ⋅ ⋅ ⋅ ∞ P(t) =

1
1 − t/p

Proof Idea

�8

Difficulty in computing the poincare series

Definition of Nk(f) is implicit.

[DMS19] algo for computing Nk(f) is not enough.

Our proof goes via computing closed form expression for Nk(f) when k>=k0.

P(t) = N0(f) +
N1(f)

p
t +

N2(f)
p2

t2 + ⋅ ⋅ ⋅ ∞

n = # distinct roots of f. ei = multiplicity, and vi = constant

Nk(f) =
n

∑
i=1

pk−⌈ k − vi
ei

⌉

Too many terms!

ℤp

What if Nk(f) has nice explicit expression? Say Nk(f) = pk-1 ?

P(t) = 1 +
t
p

+
t2

p2
+ ⋅ ⋅ ⋅ ∞ P(t) =

1
1 − t/p

for i-th root.ℤp

Proof Idea

�8

Difficulty in computing the poincare series

Definition of Nk(f) is implicit.

[DMS19] algo for computing Nk(f) is not enough.

Our proof goes via computing closed form expression for Nk(f) when k>=k0.

P(t) = N0(f) +
N1(f)

p
t +

N2(f)
p2

t2 + ⋅ ⋅ ⋅ ∞

n = # distinct roots of f. ei = multiplicity, and vi = constant

Nk(f) =
n

∑
i=1

pk−⌈ k − vi
ei

⌉ Radical f:
Nk(f) =

n

∑
i=1

pvi

Too many terms!

ℤp

What if Nk(f) has nice explicit expression? Say Nk(f) = pk-1 ?

P(t) = 1 +
t
p

+
t2

p2
+ ⋅ ⋅ ⋅ ∞ P(t) =

1
1 − t/p

for i-th root.ℤp

Proof Idea

�9

Proof Idea

�9

Number of roots can be exponential.

Proof Idea

�9

But each root is close to unique root.Number of roots can be exponential. ℤp

Proof Idea

�9

But each root is close to unique root.Number of roots can be exponential.

Neighbourhood set of i-th root:

ℤp

Proof Idea

�9

But each root is close to unique root.Number of roots can be exponential.

Compact size .Neighbourhood set of i-th root:

ℤp

Nk,i(f) = pk−⌈ k − vi
ei

⌉

Proof Idea

�9

So one can split up the Poincare series into n many series

But each root is close to unique root.Number of roots can be exponential.

Compact size .Neighbourhood set of i-th root:

ℤp

Nk,i(f) = pk−⌈ k − vi
ei

⌉

Proof Idea

�9

So one can split up the Poincare series into n many series

Pi(t) =
Nk0,i(f)

pk0
tk0 +

Nk0+1,i(f)
pk0+1

tk0+1 +
Nk0+2,i(f)

pk0+2
tk0+2 + ⋅ ⋅ ⋅ ∞

But each root is close to unique root.Number of roots can be exponential.

Compact size .Neighbourhood set of i-th root:

ℤp

Nk,i(f) = pk−⌈ k − vi
ei

⌉

Proof Idea

�9

So one can split up the Poincare series into n many series

Nk,i(f) is a nice p-power with exponent linear in k we get Pi(t) in terms of vi and ei.

Pi(t) =
Nk0,i(f)

pk0
tk0 +

Nk0+1,i(f)
pk0+1

tk0+1 +
Nk0+2,i(f)

pk0+2
tk0+2 + ⋅ ⋅ ⋅ ∞

But each root is close to unique root.Number of roots can be exponential.

Compact size .Neighbourhood set of i-th root:

ℤp

Nk,i(f) = pk−⌈ k − vi
ei

⌉

Proof Idea

�9

So one can split up the Poincare series into n many series

Nk,i(f) is a nice p-power with exponent linear in k we get Pi(t) in terms of vi and ei.

Pi(t) =
Nk0,i(f)

pk0
tk0 +

Nk0+1,i(f)
pk0+1

tk0+1 +
Nk0+2,i(f)

pk0+2
tk0+2 + ⋅ ⋅ ⋅ ∞

Pi(t) =
tki(p − t(p − 1) − tei)
p(ki−vi)/ei(1 − t)(p − tei)

But each root is close to unique root.Number of roots can be exponential.

Compact size .Neighbourhood set of i-th root:

ℤp

Nk,i(f) = pk−⌈ k − vi
ei

⌉

Proof Idea

�9

So one can split up the Poincare series into n many series

Nk,i(f) is a nice p-power with exponent linear in k we get Pi(t) in terms of vi and ei.

N0(f), N1(f), . . . , Nk0-1(f) are computed by calling [DMS19] k0 times.

Pi(t) =
Nk0,i(f)

pk0
tk0 +

Nk0+1,i(f)
pk0+1

tk0+1 +
Nk0+2,i(f)

pk0+2
tk0+2 + ⋅ ⋅ ⋅ ∞

Pi(t) =
tki(p − t(p − 1) − tei)
p(ki−vi)/ei(1 − t)(p − tei)

But each root is close to unique root.Number of roots can be exponential.

Compact size .Neighbourhood set of i-th root:

ℤp

Nk,i(f) = pk−⌈ k − vi
ei

⌉

Proof Idea

�9

So one can split up the Poincare series into n many series

Nk,i(f) is a nice p-power with exponent linear in k we get Pi(t) in terms of vi and ei.

N0(f), N1(f), . . . , Nk0-1(f) are computed by calling [DMS19] k0 times. k0 = .

Pi(t) =
Nk0,i(f)

pk0
tk0 +

Nk0+1,i(f)
pk0+1

tk0+1 +
Nk0+2,i(f)

pk0+2
tk0+2 + ⋅ ⋅ ⋅ ∞

Õ(d2)

Pi(t) =
tki(p − t(p − 1) − tei)
p(ki−vi)/ei(1 − t)(p − tei)

But each root is close to unique root.Number of roots can be exponential.

Compact size .Neighbourhood set of i-th root:

ℤp

Nk,i(f) = pk−⌈ k − vi
ei

⌉

Proof Idea

�9

So one can split up the Poincare series into n many series

Nk,i(f) is a nice p-power with exponent linear in k we get Pi(t) in terms of vi and ei.

N0(f), N1(f), . . . , Nk0-1(f) are computed by calling [DMS19] k0 times. k0 = .

Pi(t) =
Nk0,i(f)

pk0
tk0 +

Nk0+1,i(f)
pk0+1

tk0+1 +
Nk0+2,i(f)

pk0+2
tk0+2 + ⋅ ⋅ ⋅ ∞

Õ(d2)

Pi(t) =
tki(p − t(p − 1) − tei)
p(ki−vi)/ei(1 − t)(p − tei)

Use [DMS19] to compute Nk,i(f) and equate with its expression.

But each root is close to unique root.Number of roots can be exponential.

Compact size .Neighbourhood set of i-th root:

ℤp

Nk,i(f) = pk−⌈ k − vi
ei

⌉

Proof Idea

�9

So one can split up the Poincare series into n many series

Nk,i(f) is a nice p-power with exponent linear in k we get Pi(t) in terms of vi and ei.

N0(f), N1(f), . . . , Nk0-1(f) are computed by calling [DMS19] k0 times. k0 = .

Pi(t) =
Nk0,i(f)

pk0
tk0 +

Nk0+1,i(f)
pk0+1

tk0+1 +
Nk0+2,i(f)

pk0+2
tk0+2 + ⋅ ⋅ ⋅ ∞

Õ(d2)

Pi(t) =
tki(p − t(p − 1) − tei)
p(ki−vi)/ei(1 − t)(p − tei)

Use [DMS19] to compute Nk,i(f) and equate with its expression. Get vi and ei.

But each root is close to unique root.Number of roots can be exponential.

Compact size .Neighbourhood set of i-th root:

ℤp

Nk,i(f) = pk−⌈ k − vi
ei

⌉

Conclusion

�10

Conclusion

�10

We gave an algorithm to compute Igusa local zeta function (Poincare series)

Conclusion

�10

We gave an algorithm to compute Igusa local zeta function (Poincare series)
associated to a univariate polynomial which runs in deterministic poly-time.

Conclusion

�10

We gave an algorithm to compute Igusa local zeta function (Poincare series)
associated to a univariate polynomial which runs in deterministic poly-time.

Could we generalise this to n-variable polynomials?

Conclusion

�10

We gave an algorithm to compute Igusa local zeta function (Poincare series)
associated to a univariate polynomial which runs in deterministic poly-time.

Could we generalise this to n-variable polynomials? Say n=2?

Conclusion

�10

We gave an algorithm to compute Igusa local zeta function (Poincare series)
associated to a univariate polynomial which runs in deterministic poly-time.

Could we generalise this to n-variable polynomials?

For a general n-variate polynomial even root-counting is NP-Hard!

Say n=2?

Conclusion

�10

We gave an algorithm to compute Igusa local zeta function (Poincare series)
associated to a univariate polynomial which runs in deterministic poly-time.

Could we generalise this to n-variable polynomials?

For a general n-variate polynomial even root-counting is NP-Hard!

Say n=2?

Thanks for your attention.

