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But, what do we really mean by computing a function?

Often it means evaluating the function at certain points.
Eg    An exponential function:    f(x,y)= 2x + 3y   then   f(1,3) = 29.
Or       A polynomial function:   f(x,y) = x2 + xy + 1   then   f(1,-2) = 0.

But these functions are nice explicit functions with finite description.

A generating function?
Eg,              f(t) = 1 + t + t2 + . . .  encoding the sequence  1, 1, 1, 1, 1, 1, . . . 
Or              g(t) = 1 + 2t + 3t2 + . . .   encoding the sequence 1, 2, 3, 4, 5, . . .

In such cases, it is interesting to know the rational form of the function
f(t)= 1/(1-t) for |t|<1   and   g(t)= f(t)2.
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Stationary Phase Formula

Various methods developed to compute IZF for special family of polynomials.

Newton polygon method Resolution of Singularities

Indeed, counting roots of n-variable poly in finite fields is already NP-Hard.

Better algorithms?

Input: Given 1-variable polynomial f(x) with integer coefficients and a prime p.

Related to univariate root-counting mod pk. Coding theory, Crypto, Factoring etc.
Recently [DMS19] computed Nk(f) in det poly-time.

Known methods are impractical.

Simple rationality proof?Univariate Polynomials:

Output: Efficiently compute the associated Poincare series P(t)=A(t)/B(t) for 
univariate polynomials A(t) and B(t) over rationals and t = p-s.

Question: Can we find expression for Nk(f) if it exists?
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deg(B) = O(d)

P(t) = N0( f ) +
N1( f )

p
t +

N2( f )
p2

t2 + ⋅ ⋅ ⋅ ∞

We also give the proof of rationality of P(t) by first principles.



Our Results

�7

We give first deterministic poly-time algorithm to compute associated Poincare series

Zuniga-Galindo’03 gave a det poly-time algo when f completely splits over rationals

Our algo makes no such assumptions also works for f is defined over     .

Given an integral univariate      degree      f(x) ≤ d coeff. at most   prime   C p

where        is the number of zeros of      mod    with, Nk( f ) f(x) pk

P(t) =
A(t)
B(t)

; t = p−s deg(A) = Õ(d2)
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Thanks for your attention.


