Poly-time blackbox identity testing for sum of log-variate, constant-width ROABPs

Pranav Bisht Joint work with: Nitin Saxena

May 2, 2020

Department of Computer Science and Engg. IIT Kanpur Blackbox PIT for sum of constantly-many, log-variate constant-width ROABPs is in poly-time.

Blackbox PIT for sum of constantly-many, log-variate constant-width ROABPs is in poly-time.

Blackbox PIT for sum of unbounded-many, log-variate constant-width ROABPs is in poly-time, if each ROABP computes a homogeneous polynomial. Introduction

Models of Interest

Motivation

Main Results

Introduction

- Simply test whether a given multivariate polynomial is identically zero or not.
- Identically zero means all coefficients in fully expanded form are 0.
- Input representation: Algebraic circuits, Algebraic Branching Programs (ABPs), Read-once Oblivious ABPs (ROABPs).

Two types of PIT algorithms:

- 1. Whitebox PIT: Have access to internal nodes of the circuit/ABP/ROABP.
- 2. Blackbox PIT: Can only evaluate circuit/ABP/ROABP on field points.

Definition 1 (Blackbox PIT)

Let \mathcal{P} be a set of polynomials in $\mathbb{F}[x_1, \ldots, x_n]$ of degree d. A blackbox PIT algorithm for \mathcal{P} outputs a set of points $\mathcal{H} \subseteq \mathbb{F}^n$ such that if $f \in \mathcal{P}$ computes a non-zero polynomial, then $\exists \overline{\alpha} \in \mathcal{H}$ such that $f(\overline{\alpha}) \neq 0$.

Definition 1 (Blackbox PIT)

Let \mathcal{P} be a set of polynomials in $\mathbb{F}[x_1, \ldots, x_n]$ of degree d. A blackbox PIT algorithm for \mathcal{P} outputs a set of points $\mathcal{H} \subseteq \mathbb{F}^n$ such that if $f \in \mathcal{P}$ computes a non-zero polynomial, then $\exists \overline{\alpha} \in \mathcal{H}$ such that $f(\overline{\alpha}) \neq 0$.

• Example: Size d + 1 hitting set for univariates.

Lemma 1 (PIT Lemma [Sch80] [Zip79] [DL77])

Let $f \in \mathbb{F}[x_1, ..., x_n]$ be a non-zero polynomial of total degree d. Let S be any finite subset of \mathbb{F} , of size > d and let $\alpha_1, \alpha_2, ..., \alpha_n$ be elements selected randomly from S. Then

$$Pr_{\alpha_1,\ldots,\alpha_n\in rS}[f(\alpha_1,\ldots,\alpha_n)=0]\leq \frac{d}{|S|}$$

Lemma 1 (PIT Lemma [Sch80] [Zip79] [DL77])

Let $f \in \mathbb{F}[x_1, ..., x_n]$ be a non-zero polynomial of total degree d. Let S be any finite subset of \mathbb{F} , of size > d and let $\alpha_1, \alpha_2, ..., \alpha_n$ be elements selected randomly from S. Then

$$Pr_{\alpha_1,\ldots,\alpha_n\in rS}[f(\alpha_1,\ldots,\alpha_n)=0]\leq rac{d}{|S|}$$

- This gives poly-time randomized algorithm for PIT.
- Trivial derandomization: $(d+1)^n$ time deterministic algorithm for PIT.

- Lower Bounds.
- Primality Testing.
- Deciding existence of perfect matching in a graph.
- IP = PSPACE.
- Polynomial Factoring.
- Polynomial Equivalence.

Standard example: Sparse PIT

- General PIT seems difficult as of now. Can we solve restricted cases?
- For eg, do we have poly-time blackbox PIT for the class of sparse polynomials?

- General PIT seems difficult as of now. Can we solve restricted cases?
- For eg, do we have poly-time blackbox PIT for the class of sparse polynomials?
- Kronecker map: $x_i \to y^{d^{i-1}}$.
- [AB03] There exists $1 \le r \le \operatorname{poly}(mn \log d)$ such that, $f \not\equiv 0 \Leftrightarrow f(y, y^{d(\text{mod } r)}, y^{d^2(\text{mod } r)}, \dots, y^{d^{n-1}(\text{mod } r)}) \not\equiv 0.$
- Sparse PIT map Φ preserves non-zeroness of a *m*-sparse, *n* variate, degree *d* polynomial.

Models of Interest

Algebraic Circuit

Figure 1: A circuit computing the polynomial $x^2 + y + 1$.

- Layered DAG with unique source *s* and sink *t*.
- Edges are labeled with linear polynomials.
- $C(\bar{x}) = \sum_{\text{path } p: s \rightsquigarrow t} w(p)$, where $w(p) = \prod_{e \in p} w(e)$.
- Size parameters: width, length (degree), number of variables.

Figure 2: ABP of width 2, depth 3 computing $f = x_2 x_3$.

Iterated Matrix Multiplication

 $C(\bar{x}) = U^{\top}(\prod_{i=1}^{d} D_i)V$, where $U, V \in \mathbb{F}^{w \times 1}$ and $D_i \in \mathbb{F}[\bar{x}]^{w \times w}$.

- Each variable appears in a single layer only (read-once).
- Edge weights are univariate polynomials.

•
$$C(\bar{x}) = U^{\top} \cdot D_1(x_{\pi(1)}) D_2(x_{\pi(2)}) \cdots D_n(x_{\pi(n)}) \cdot V.$$

- Size parameters: width, length (number of variables), degree.
- Variable order matters.

Figure 3: ROABP computing $f = (x_1 + y_1)(x_2 + y_2) \cdots (x_n + y_n)$.

Comparative example

Figure 4: $(x + y)^d$ as computed by a circuit, ABP and ROABP resp. ¹⁴

- ROABP is a complete model.
- [Nis91] gave a rank based measure M(f) such that a polynomial f is computed by w-width ROABP, if and only if M(f) ≤ w.

- ROABP is a complete model.
- [Nis91] gave a rank based measure M(f) such that a polynomial f is computed by w-width ROABP, if and only if M(f) ≤ w.
- Both $det_{n \times n}$ and $per_{n \times n}$ have ROABPs of size $2^{\theta(n)}$ in any variable order [Nis91].
- While $det_{n \times n}$ has an ABP of size $O(n^3)$ [MV97], $per_{n \times n}$ is believed to be hard for ABPs.

Motivation

- PIT for ABPs is open (even lower bounds).
- [AGS19] show even PIT for log-variate width-2 ABPs will almost solve general PIT.

- PIT for ABPs is open (even lower bounds).
- [AGS19] show even PIT for log-variate width-2 ABPs will almost solve general PIT.
- Solving PIT for ROABPs is the natural first step since exponential lower bounds are already known but poly-time blackbox PIT is still open.

• Bootstrapping results point that solving PIT for log^{oc} s-variate circuits will solve general PIT.

- Bootstrapping results point that solving PIT for log^{oc} s-variate circuits will solve general PIT.
- [FGS18] give poly-time blackbox PIT for log-variate ∑ ∧ ∑ (Diagonal depth-3) but general *n*-variate is still open.

- Bootstrapping results point that solving PIT for log^{oc} s-variate circuits will solve general PIT.
- [FGS18] give poly-time blackbox PIT for log-variate ∑ ∧ ∑ (Diagonal depth-3) but general *n*-variate is still open.
- PIT for log-variate commutative ROABP \Rightarrow PIT for general *n*-variate $\sum \bigwedge \sum$. [Sax08, FSS14]

- Bootstrapping results point that solving PIT for log^{oc} s-variate circuits will solve general PIT.
- [FGS18] give poly-time blackbox PIT for log-variate ∑ ∧ ∑ (Diagonal depth-3) but general *n*-variate is still open.
- PIT for log-variate commutative ROABP \Rightarrow PIT for general *n*-variate $\sum \bigwedge \sum$. [Sax08, FSS14]
- Note that we have quasi-poly time (s^{O(log s)}) blackbox PIT by brute-force in log-variate regime. We need strictly poly-time.

• [GKS17] solve PIT for constant-width ROABP but only for known variable order and for fields of zero or large characteristic.

- [GKS17] solve PIT for constant-width ROABP but only for known variable order and for fields of zero or large characteristic.
- Sum of constant-width ROABPs >> Single constant-width ROABP.
- [KNS16] construct explicit polynomial computable by just sum of two width-3 ROABPs but requires 2^{Ω(n)} width to compute using a single ROABP.

- [GKS17] solve PIT for constant-width ROABP but only for known variable order and for fields of zero or large characteristic.
- Sum of constant-width ROABPs >> Single constant-width ROABP.
- [KNS16] construct explicit polynomial computable by just sum of two width-3 ROABPs but requires 2^{Ω(n)} width to compute using a single ROABP.
- Hence, before this work, there was no poly-time PIT known even for sum of two log-variate constant-width ROABPs.

• PIT for log-variate commutative ROABPs \Rightarrow PIT for $\sum \bigwedge \sum$ model. [Sax08, FSS14] (We solve for log-variate constant-width ROABPs)

- PIT for log-variate commutative ROABPs ⇒ PIT for ∑ ∧ ∑ model. [Sax08, FSS14] (We solve for log-variate constant-width ROABPs)
- PIT for sum of (unbounded-many) log-variate constant width ROABPs ⇒ PIT for ∑ ∧ ∑. (We solve it when each ROABP is restricted to compute a homogeneous polynomial)
- PIT for log-variate commutative ROABPs ⇒ PIT for ∑ ∧ ∑ model. [Sax08, FSS14] (We solve for log-variate constant-width ROABPs)
- PIT for sum of (unbounded-many) log-variate constant width ROABPs ⇒ PIT for ∑ ∧ ∑. (We solve it when each ROABP is restricted to compute a homogeneous polynomial)
- PIT for sum of (unbounded-many) ROABPs ⇒ PIT for multilinear depth-3 (∑∏∑).

- [RS05]: Poly-time whitebox PIT for ROABPs.
- [FS13]: Quasi-poly time blackbox PIT for ROABPs of known var. order.
- [AGKS15]: Quasi-poly time blackbox PIT for ROABPs.
- [GKST16]: Quasi-poly time blackbox PIT for sum of constantly-many ROABPs.
- [GKS17]: Poly-time blackbox PIT for constant-width ROABPs of known var. order (over fields of zero or large characteristic).

Main Results

Theorem 1 (Sum of ROABPs)

Let \mathcal{P} be a set of n-variate polynomials, over a field \mathbb{F} , computed by a sum of c-many ROABPs, each of width-r and size-s. (The variable order of each ROABP is unknown.) Then, blackbox PIT for \mathcal{P} can be solved in poly(s^c , r^{n3^c}) time.

Theorem 1 (Sum of ROABPs)

Let \mathcal{P} be a set of n-variate polynomials, over a field \mathbb{F} , computed by a sum of c-many ROABPs, each of width-r and size-s. (The variable order of each ROABP is unknown.) Then, blackbox PIT for \mathcal{P} can be solved in poly(s^c , r^{n3^c}) time.

Poly(s) time for r, c = O(1) and $n = O(\log s)$.

Both brute-force (d^n) and [GKST16] yield only $s^{O(\log s)}$ time blackbox PIT.

Theorem 2 (Sum of Homog. ROABPs)

Let \mathcal{P} be a set of n-variate polynomials, over a field \mathbb{F} , computed by a sum of c-many ROABPs, each of width-r and size-s, each computing a homogeneous polynomial. (The variable order of each ROABP is unknown.) Then, blackbox PIT for \mathcal{P} can be solved in poly(crⁿ, s) time.

Theorem 2 (Sum of Homog. ROABPs)

Let \mathcal{P} be a set of n-variate polynomials, over a field \mathbb{F} , computed by a sum of c-many ROABPs, each of width-r and size-s, each computing a homogeneous polynomial. (The variable order of each ROABP is unknown.) Then, blackbox PIT for \mathcal{P} can be solved in poly(crⁿ, s) time.

Poly(s) time for r = O(1) and $n = O(\log s)$. (arbitrary c)

Final polynomial may be inhomogeneous.

- Syntactic homogeneity in same width.
- Bypassing log-support concentration for sum of ROABPs.

Definition 2 (Syntactically Homogeneous ROABP)

For any two nodes (u, v) in the ROABP, the polynomial computed from $u \rightsquigarrow v$ is homogeneous.

Definition 2 (Syntactically Homogeneous ROABP)

For any two nodes (u, v) in the ROABP, the polynomial computed from $u \rightsquigarrow v$ is homogeneous.

Theorem 3 (Structure Theorem)

If f is a homogeneous polynomial computed by an ROABP of width w, then it is also computed by a syntactically homogeneous ROABP of width $r \le w$.

Proved using Nisan's characterization, variable disjointedness and degree argument.

Example: ROABP and syntactically homogeneous ROABP resp. computing a homogeneous polynomial.

$$(x+y)^{2} = \begin{bmatrix} \frac{35}{12} \\ \frac{-26}{3}(1+x+\frac{1}{2}x^{2}) \\ \frac{19}{2}(1+2x+2x^{2}) \\ \frac{-14}{3}(1+3x+\frac{9}{2}x^{2}) \\ \frac{11}{12}(1+4x+8x^{2}) \end{bmatrix}^{T} \cdot \begin{bmatrix} 1 \\ 1+y+\frac{1}{2}y^{2} \\ 1+2y+2y^{2} \\ 1+3y+\frac{9}{2}y^{2} \\ 1+4y+8y^{2} \end{bmatrix}$$
$$(x+y)^{2} = \begin{bmatrix} x^{2} & 2x & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ y \\ y^{2} \end{bmatrix}$$

• Syntactic Homogeneity \Rightarrow Monomial edge weights.

- Syntactic Homogeneity \Rightarrow Monomial edge weights.
- Monomial edge weights \Rightarrow Sparsity $(f) \le r^n$.

- Syntactic Homogeneity \Rightarrow Monomial edge weights.
- Monomial edge weights \Rightarrow Sparsity $(f) \le r^n$.
- Thus, sparsity $(f_1 + f_2 + \ldots + f_c) \leq cr^n$.

- Syntactic Homogeneity \Rightarrow Monomial edge weights.
- Monomial edge weights \Rightarrow Sparsity $(f) \le r^n$.
- Thus, sparsity $(f_1 + f_2 + \ldots + f_c) \leq cr^n$.
- Apply sparse PIT map.

- Syntactic Homogeneity \Rightarrow Monomial edge weights.
- Monomial edge weights \Rightarrow Sparsity $(f) \le r^n$.
- Thus, sparsity $(f_1 + f_2 + \ldots + f_c) \leq cr^n$.
- Apply sparse PIT map.
- Gives poly-time blackbox PIT for arbitrary sum of homog. ROABPs (constant-width, log-variate).

Lemma 2

Let f be a degree-d polynomial computed by an ROABP of width w. Then, $f^{[d]}$ is also computed by an ROABP of width $r \leq w$.

 $f^{[d]}$ denotes the degree-*d* homogeneous component of *f*.

Lemma 2

Let f be a degree-d polynomial computed by an ROABP of width w. Then, $f^{[d]}$ is also computed by an ROABP of width $r \leq w$.

 $f^{[d]}$ denotes the degree-d homogeneous component of f.

- By structure theorem, sparsity $(f^{[d]}) \leq r^n$.
- Apply sparse PIT map on $f^{[d]}$.
- Gives poly-time blackbox PIT for constant-width, log-variate ROABP (possibly inhomogeneous).

PIT: Sum of ROABPs

• Case 1 (Easy): Both A and B have width r in same var. order.

- Case 1 (Easy): Both A and B have width r in same var. order.
- Case 2: A and B have width r in different var. orders.

- Case 1 (Easy): Both A and B have width r in same var. order.
- Case 2: A and B have width r in different var. orders.
 - [GKST16] whitebox idea: Iteratively build ROABP of *B* in var. order of *A*.

- Case 1 (Easy): Both A and B have width r in same var. order.
- Case 2: A and B have width r in different var. orders.
 - [GKST16] whitebox idea: Iteratively build ROABP of *B* in var. order of *A*.
 - Case 2.a (Easy): B also has width r in var. order of A.

- Case 1 (Easy): Both A and B have width r in same var. order.
- Case 2: A and B have width r in different var. orders.
 - [GKST16] whitebox idea: Iteratively build ROABP of *B* in var. order of *A*.
 - Case 2.a (Easy): B also has width r in var. order of A.
 - Case 2.b: *B* does not have width *r* in var. order of *A*.

- Case 1 (Easy): Both A and B have width r in same var. order.
- Case 2: A and B have width r in different var. orders.
 - [GKST16] whitebox idea: Iteratively build ROABP of *B* in var. order of *A*.
 - Case 2.a (Easy): B also has width r in var. order of A.
 - Case 2.b: *B* does not have width *r* in var. order of *A*.

For Case 2.b, find the first layer where B deviates from A. Deviation is certified by B not satisfying the *dependency equations* of A.

- Case 1 (Easy): Both A and B have width r in same var. order.
- Case 2: A and B have width r in different var. orders.
 - [GKST16] whitebox idea: Iteratively build ROABP of *B* in var. order of *A*.
 - Case 2.a (Easy): B also has width r in var. order of A.
 - Case 2.b: *B* does not have width *r* in var. order of *A*.

For Case 2.b, find the first layer where B deviates from A. Deviation is certified by B not satisfying the *dependency equations* of A.

This non-zeroness *certificate* can be found in poly-time in *whitebox* setting.

Var. orders are *unknown* in blackbox setting.

Var. orders are *unknown* in blackbox setting.

[GKST16] take shift route which takes quasi-poly time.

Var. orders are *unknown* in blackbox setting.
[GKST16] take shift route which takes quasi-poly time.
Our idea: Search for certificate in 2ⁿ time.

Var. orders are unknown in blackbox setting.

[GKST16] take shift route which takes quasi-poly time.

Our idea: Search for certificate in 2^n time.

- Suppose B deviates at k^{th} layer.
- Go over all *k*-length prefixes. Can take *n*! time which is super-poly time.

Var. orders are unknown in blackbox setting.

[GKST16] take shift route which takes quasi-poly time.

Our idea: Search for certificate in 2^n time.

- Suppose *B* deviates at *k*th layer.
- Go over all *k*-length prefixes. Can take *n*! time which is super-poly time.
- Correction: Go over all *k*-sized subsets. Takes $\leq 2^n$ time.
- It works since we apply PIT map of single ROABP on prefix, which is independent of var. order of prefix.

 $x_{\pi(1)} < x_{\pi(2)} < \ldots < x_{\pi(n)} = y_1 < y_2 < \ldots < y_n.$

 $x_{\pi(1)} < x_{\pi(2)} < \ldots < x_{\pi(n)} = y_1 < y_2 < \ldots < y_n.$

• Prefix PIT map $\Phi : \mathbb{F}[y_1, \dots, y_{k-1}] \to \mathbb{F}[t_1]$. (Guess the prefix variables)

 $x_{\pi(1)} < x_{\pi(2)} < \ldots < x_{\pi(n)} = y_1 < y_2 < \ldots < y_n.$

- Prefix PIT map $\Phi : \mathbb{F}[y_1, \dots, y_{k-1}] \to \mathbb{F}[t_1]$. (Guess the prefix variables)
- Deviation layer variable $y_k \rightarrow y_k$. (Guess correct y_k)

 $x_{\pi(1)} < x_{\pi(2)} < \ldots < x_{\pi(n)} = y_1 < y_2 < \ldots < y_n.$

- Prefix PIT map $\Phi : \mathbb{F}[y_1, \dots, y_{k-1}] \to \mathbb{F}[t_1]$. (Guess the prefix variables)
- Deviation layer variable $y_k \rightarrow y_k$. (Guess correct y_k)
- Suffix PIT map $\Psi : \mathbb{F}[y_{k+1}, \dots y_n] \to \mathbb{F}[t_2].$
- From *n*-variate to tri-variate.

 $x_{\pi(1)} < x_{\pi(2)} < \ldots < x_{\pi(n)} = y_1 < y_2 < \ldots < y_n.$

- Prefix PIT map $\Phi : \mathbb{F}[y_1, \dots, y_{k-1}] \to \mathbb{F}[t_1]$. (Guess the prefix variables)
- Deviation layer variable $y_k \rightarrow y_k$. (Guess correct y_k)
- Suffix PIT map $\Psi : \mathbb{F}[y_{k+1}, \dots, y_n] \to \mathbb{F}[t_2].$
- From *n*-variate to tri-variate.

Using PIT maps that work for a single ROABP of width $O(r^3)$ suffice to preserve the certificate under variable reduction.
This idea can be extended recursively to sum of *c* ROABPs. Set $A = A_1$ and $B = A_2 + \ldots + A_c$.

This idea can be extended recursively to sum of *c* ROABPs. Set $A = A_1$ and $B = A_2 + \ldots + A_c$.

Our algorithm is not limited to constant-width!

It can be seen as a reduction from PIT of sum of *c* ROABPs (any-width) to PIT of single ROABP (similar-width) in log-variate setting. (*c*-constant)

Following models are OPEN:

• Poly-time blackbox PIT for log-variate ROABPs (even commutative).

Following models are OPEN:

- Poly-time blackbox PIT for log-variate ROABPs (even commutative).
- Poly-time blackbox PIT for constant-width ROABPs (for unknown var. order and all fields).

Following models are OPEN:

- Poly-time blackbox PIT for log-variate ROABPs (even commutative).
- Poly-time blackbox PIT for constant-width ROABPs (for unknown var. order and all fields).
- Poly-time blackbox PIT for sum of unbounded-many log-variate, constant-width ROABPs.

References

- [AB03] Manindra Agrawal and Somenath Biswas. Primality and identity testing via chinese remaindering. *Journal of the ACM (JACM)*, 50(4):429–443, 2003.
- [AGKS15] Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Hitting-sets for roabp and sum of set-multilinear circuits. SIAM Journal on Computing, 44(3):669–697, 2015.
 - [AGS19] Manindra Agrawal, Sumanta Ghosh, and Nitin Saxena. Bootstrapping variables in algebraic circuits. Proceedings of the National Academy of Sciences, 116(17):8107–8118, 2019. (A preliminary version appeared in STOC, 2018).

- [DL77] Richard A DeMillo and Richard J Lipton. A probabilistic remark on algebraic program testing. Technical report, GEORGIA INST OF TECH ATLANTA SCHOOL OF INFORMATION AND COMPUTER SCIENCE, 1977.
- [FGS18] Michael A Forbes, Sumanta Ghosh, and Nitin Saxena. Towards blackbox identity testing of log-variate circuits. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.
 - [FS13] Michael A Forbes and Amir Shpilka. Quasipolynomial-time identity testing of non-commutative and read-once oblivious algebraic branching programs. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pages 243–252. IEEE, 2013.

References iii

- [FSS14] Michael A. Forbes, Ramprasad Saptharishi, and Amir Shpilka. Hitting sets for multilinear read-once algebraic branching programs, in any order. In Symposium on Theory of Computing (STOC), New York, NY, USA, May 31 - June 03, 2014, pages 867–875, 2014.
- [GKS17] Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Identity testing for constant-width, and any-order, read-once oblivious arithmetic branching programs. *Theory of Computing*, 13(2):1–21, 2017. (Preliminary version in CCC'16).
- [GKST16] Rohit Gurjar, Arpita Korwar, Nitin Saxena, and Thomas Thierauf. Deterministic identity testing for sum of read-once oblivious arithmetic branching programs. *Computational Complexity*, pages 1–46, 2016. (Conference version in CCC 2015).

References iv

- [KNS16] Neeraj Kayal, Vineet Nair, and Chandan Saha. Separation between read-once oblivious algebraic branching programs (roabps) and multilinear depth three circuits. In 33rd Symposium on Theoretical Aspects of Computer Science (STACS), pages 46:1–46:15, 2016.
 - [MV97] Meena Mahajan and V Vinay. A combinatorial algorithm for the determinant. In SODA, pages 730–738, 1997.
 - [Nis91] Noam Nisan. Lower bounds for non-commutative computation. In Proceedings of the 23rd ACM Symposium on Theory of Computing, ACM Press. Citeseer, 1991.
 - [RS05] Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-commutative models. *Computational Complexity*, 14(1):1–19, 2005.
 - [Sax08] Nitin Saxena. Diagonal circuit identity testing and lower bounds. In International Colloquium on Automata, Languages, and Programming, pages 60–71. Springer, 2008.

- [Sch80] Jacob T Schwartz. Fast probabilistic algorithms for verification of polynomial identities. *Journal of the ACM (JACM)*, 27(4):701–717, 1980.
- [Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In International Symposium on Symbolic and Algebraic Manipulation, pages 216–226. Springer, 1979.