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Main Results (Informal)

Blackbox PIT for sum of constantly-many, log-variate

constant-width ROABPs is in poly-time.

Blackbox PIT for sum of unbounded-many, log-variate

constant-width ROABPs is in poly-time, if each ROABP computes

a homogeneous polynomial.
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Introduction



Polynomial Identity Testing (PIT)

• Simply test whether a given multivariate polynomial is

identically zero or not.

• Identically zero means all coefficients in fully expanded form

are 0.

• Input representation: Algebraic circuits, Algebraic Branching

Programs (ABPs), Read-once Oblivious ABPs (ROABPs).

2



Polynomial Identity Testing

Two types of PIT algorithms:

1. Whitebox PIT: Have access to internal nodes of the

circuit/ABP/ROABP.

2. Blackbox PIT: Can only evaluate circuit/ABP/ROABP on

field points.
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Blackbox PIT

Definition 1 (Blackbox PIT)

Let P be a set of polynomials in F[x1, . . . , xn] of degree d. A

blackbox PIT algorithm for P outputs a set of points H ⊆ Fn

such that if f ∈ P computes a non-zero polynomial, then

∃α ∈ H such that f (α) 6= 0.

• Example: Size d + 1 hitting set for univariates.
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Blackbox PIT
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Randomized Algorithm

Lemma 1 (PIT Lemma [Sch80] [Zip79] [DL77])

Let f ∈ F[x1, . . . , xn] be a non-zero polynomial of total degree d.

Let S be any finite subset of F, of size > d and let α1, α2, . . . , αn

be elements selected randomly from S. Then

Prα1,...,αn∈rS [f (α1, . . . , αn) = 0] ≤ d

|S |

• This gives poly-time randomized algorithm for PIT.

• Trivial derandomization: (d + 1)n time deterministic algorithm

for PIT.

5



Randomized Algorithm

Lemma 1 (PIT Lemma [Sch80] [Zip79] [DL77])

Let f ∈ F[x1, . . . , xn] be a non-zero polynomial of total degree d.

Let S be any finite subset of F, of size > d and let α1, α2, . . . , αn

be elements selected randomly from S. Then

Prα1,...,αn∈rS [f (α1, . . . , αn) = 0] ≤ d

|S |

• This gives poly-time randomized algorithm for PIT.

• Trivial derandomization: (d + 1)n time deterministic algorithm

for PIT.

5



Connections of PIT

• Lower Bounds.

• Primality Testing.

• Deciding existence of perfect matching in a graph.

• IP = PSPACE.

• Polynomial Factoring.

• Polynomial Equivalence.
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Standard example: Sparse PIT

• General PIT seems difficult as of now. Can we solve restricted

cases?

• For eg, do we have poly-time blackbox PIT for the class of

sparse polynomials?

• Kronecker map: xi → yd
i−1

.

• [AB03] There exists 1 ≤ r ≤ poly(mn log d) such that,

f 6≡ 0⇔ f (y , yd(mod r), yd
2(mod r), . . . , yd

n−1(mod r)) 6≡ 0.

• Sparse PIT map Φ preserves non-zeroness of a m-sparse, n

variate, degree d polynomial.
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Models of Interest



Algebraic Circuit

x 1 y 2

+ +

+

×

+

−1

Figure 1: A circuit computing the polynomial x2 + y + 1.
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Algebraic Branching Program (ABP)

• Layered DAG with unique source s and sink t.

• Edges are labeled with linear polynomials.

• C (x̄) =
∑

path p:s t w(p), where w(p) =
∏

e∈p w(e).

• Size parameters: width, length (degree), number of variables.
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Figure 2: ABP of width 2, depth 3 computing f = x2x3.
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Iterated Matrix Multiplication

[
x1 + x2 −x3

] [x1 x1

0 x2

][
1

−1

]
[
1 −1

] [x1 + x2 0

0 x3

][
x1 x1

0 x2

][
1

−1

]

C (x̄) = U>(
∏d

i=1 Di )V , where U,V ∈ Fw×1 and Di ∈ F[x̄ ]w×w .
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Read-once oblivious ABP (ROABP)

• Each variable appears in a single layer only (read-once).

• Edge weights are univariate polynomials.

• C (x̄) = U> · D1(xπ(1))D2(xπ(2)) · · ·Dn(xπ(n)) · V .

• Size parameters: width, length (number of variables), degree.

• Variable order matters.
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Figure 3: ROABP computing f = (x1 + y1)(x2 + y2) · · · (xn + yn).
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Comparative example

Figure 4: (x + y)d as computed by a circuit, ABP and ROABP resp. 14



Nisan’s characterization

• ROABP is a complete model.

• [Nis91] gave a rank based measure M(f ) such that a

polynomial f is computed by w -width ROABP, if and only if

M(f ) ≤ w .

• Both detn×n and pern×n have ROABPs of size 2θ(n) in any

variable order [Nis91].

• While detn×n has an ABP of size O(n3) [MV97], pern×n is

believed to be hard for ABPs.
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Motivation



Motivation: ABPs

• PIT for ABPs is open (even lower bounds).

• [AGS19] show even PIT for log-variate width-2 ABPs will

almost solve general PIT.

• Solving PIT for ROABPs is the natural first step since

exponential lower bounds are already known but poly-time

blackbox PIT is still open.
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Motivation: Log-variate

• Bootstrapping results point that solving PIT for log◦c s-variate

circuits will solve general PIT.

• [FGS18] give poly-time blackbox PIT for log-variate
∑∧∑

(Diagonal depth-3) but general n-variate is still open.

• PIT for log-variate commutative ROABP ⇒ PIT for general

n-variate
∑∧∑

. [Sax08, FSS14]

• Note that we have quasi-poly time (sO(log s)) blackbox PIT by

brute-force in log-variate regime. We need strictly poly-time.
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Motivation: Constant-width

• [GKS17] solve PIT for constant-width ROABP but only for

known variable order and for fields of zero or large

characteristic.

• Sum of constant-width ROABPs >> Single constant-width

ROABP.

• [KNS16] construct explicit polynomial computable by just sum

of two width-3 ROABPs but requires 2Ω(n) width to compute

using a single ROABP.

• Hence, before this work, there was no poly-time PIT known

even for sum of two log-variate constant-width ROABPs.
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Motivation: Connections with other OPEN models

• PIT for log-variate commutative ROABPs ⇒ PIT for
∑∧∑

model. [Sax08, FSS14] (We solve for log-variate

constant-width ROABPs)

• PIT for sum of (unbounded-many) log-variate constant width

ROABPs ⇒ PIT for
∑∧∑

. (We solve it when each ROABP

is restricted to compute a homogeneous polynomial)

• PIT for sum of (unbounded-many) ROABPs ⇒ PIT for

multilinear depth-3 (
∑∏∑

).
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Previous results

• [RS05]: Poly-time whitebox PIT for ROABPs.

• [FS13]: Quasi-poly time blackbox PIT for ROABPs of known

var. order.

• [AGKS15]: Quasi-poly time blackbox PIT for ROABPs.

• [GKST16]: Quasi-poly time blackbox PIT for sum of

constantly-many ROABPs.

• [GKS17]: Poly-time blackbox PIT for constant-width ROABPs

of known var. order (over fields of zero or large characteristic).
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Our Results

Theorem 1 (Sum of ROABPs)

Let P be a set of n-variate polynomials, over a field F, computed

by a sum of c-many ROABPs, each of width-r and size-s. (The

variable order of each ROABP is unknown.) Then, blackbox PIT

for P can be solved in poly(sc , rn3c ) time.

Poly(s) time for r , c = O(1) and n = O(log s).

Both brute-force (dn) and [GKST16] yield only sO(log s) time

blackbox PIT.
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Our Results

Theorem 2 (Sum of Homog. ROABPs)

Let P be a set of n-variate polynomials, over a field F, computed

by a sum of c-many ROABPs, each of width-r and size-s, each

computing a homogeneous polynomial. (The variable order of

each ROABP is unknown.) Then, blackbox PIT for P can be

solved in poly(crn, s) time.

Poly(s) time for r = O(1) and n = O(log s). (arbitrary c)

Final polynomial may be inhomogeneous.
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New techniques:

• Syntactic homogeneity in same width.

• Bypassing log-support concentration for sum of ROABPs.
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PIT: Sum of Homog. ROABPs

Definition 2 (Syntactically Homogeneous ROABP)

For any two nodes (u, v) in the ROABP, the polynomial

computed from u  v is homogeneous.

Theorem 3 (Structure Theorem)

If f is a homogeneous polynomial computed by an ROABP of

width w, then it is also computed by a syntactically

homogeneous ROABP of width r ≤ w.

Proved using Nisan’s characterization, variable disjointedness and

degree argument.
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PIT: Sum of Homog. ROABPs

Example: ROABP and syntactically homogeneous ROABP resp.

computing a homogeneous polynomial.

(x + y)2 =



35
12

−26
3 (1 + x + 1

2x
2)

19
2 (1 + 2x + 2x2)
−14

3 (1 + 3x + 9
2x

2)
11
12 (1 + 4x + 8x2)



ᵀ

·


1

1 + y + 1
2y

2

1 + 2y + 2y2

1 + 3y + 9
2y

2

1 + 4y + 8y2


(x + y)2 =

[
x2 2x 1

]
·

 1

y

y2


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PIT: Sum of Homog. ROABPs

• Syntactic Homogeneity ⇒ Monomial edge weights.

• Monomial edge weights ⇒ Sparsity(f ) ≤ rn.

• Thus, sparsity(f1 + f2 + . . .+ fc) ≤ crn.

• Apply sparse PIT map.

• Gives poly-time blackbox PIT for arbitrary sum of homog.

ROABPs (constant-width, log-variate).

26



PIT: Sum of Homog. ROABPs

• Syntactic Homogeneity ⇒ Monomial edge weights.

• Monomial edge weights ⇒ Sparsity(f ) ≤ rn.

• Thus, sparsity(f1 + f2 + . . .+ fc) ≤ crn.

• Apply sparse PIT map.

• Gives poly-time blackbox PIT for arbitrary sum of homog.

ROABPs (constant-width, log-variate).

26



PIT: Sum of Homog. ROABPs

• Syntactic Homogeneity ⇒ Monomial edge weights.

• Monomial edge weights ⇒ Sparsity(f ) ≤ rn.

• Thus, sparsity(f1 + f2 + . . .+ fc) ≤ crn.

• Apply sparse PIT map.

• Gives poly-time blackbox PIT for arbitrary sum of homog.

ROABPs (constant-width, log-variate).

26



PIT: Sum of Homog. ROABPs

• Syntactic Homogeneity ⇒ Monomial edge weights.

• Monomial edge weights ⇒ Sparsity(f ) ≤ rn.

• Thus, sparsity(f1 + f2 + . . .+ fc) ≤ crn.

• Apply sparse PIT map.

• Gives poly-time blackbox PIT for arbitrary sum of homog.

ROABPs (constant-width, log-variate).

26



PIT: Sum of Homog. ROABPs

• Syntactic Homogeneity ⇒ Monomial edge weights.

• Monomial edge weights ⇒ Sparsity(f ) ≤ rn.

• Thus, sparsity(f1 + f2 + . . .+ fc) ≤ crn.

• Apply sparse PIT map.

• Gives poly-time blackbox PIT for arbitrary sum of homog.

ROABPs (constant-width, log-variate).

26



PIT: Single ROABP

Lemma 2

Let f be a degree-d polynomial computed by an ROABP of width

w. Then, f [d ] is also computed by an ROABP of width r ≤ w.

f [d ] denotes the degree-d homogeneous component of f .

• By structure theorem, sparsity(f [d ]) ≤ rn.

• Apply sparse PIT map on f [d ].

• Gives poly-time blackbox PIT for constant-width, log-variate

ROABP (possibly inhomogeneous).
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PIT: Sum of ROABPs

Consider sum of two: A + B.

• Case 1 (Easy): Both A and B have width r in same var. order.

• Case 2: A and B have width r in different var. orders.

• [GKST16] whitebox idea: Iteratively build ROABP of B in var.

order of A.

• Case 2.a (Easy): B also has width r in var. order of A.

• Case 2.b: B does not have width r in var. order of A.

For Case 2.b, find the first layer where B deviates from A.

Deviation is certified by B not satisfying the dependency equations

of A.

This non-zeroness certificate can be found in poly-time in whitebox

setting.

28
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PIT: Sum of ROABPs

Var. orders are unknown in blackbox setting.

[GKST16] take shift route which takes quasi-poly time.

Our idea: Search for certificate in 2n time.

• Suppose B deviates at kth layer.

• Go over all k-length prefixes. Can take n! time which is

super-poly time.

• Correction: Go over all k-sized subsets. Takes ≤ 2n time.

• It works since we apply PIT map of single ROABP on prefix,

which is independent of var. order of prefix.
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PIT: Sum of ROABPs

Suppose variable order of A is

xπ(1) < xπ(2) < . . . < xπ(n) = y1 < y2 < . . . < yn.

• Prefix PIT map Φ : F[y1, . . . yk−1]→ F[t1]. (Guess the prefix

variables)

• Deviation layer variable yk → yk . (Guess correct yk)

• Suffix PIT map Ψ : F[yk+1, . . . yn]→ F[t2].

• From n-variate to tri-variate.

Using PIT maps that work for a single ROABP of width O(r3)

suffice to preserve the certificate under variable reduction.
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PIT: Sum of ROABPs

This idea can be extended recursively to sum of c ROABPs. Set

A = A1 and B = A2 + . . .+ Ac .

Our algorithm is not limited to constant-width!

It can be seen as a reduction from PIT of sum of c ROABPs

(any-width) to PIT of single ROABP (similar-width) in log-variate

setting. (c-constant)
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Future Directions

Following models are OPEN:

• Poly-time blackbox PIT for log-variate ROABPs (even

commutative).

• Poly-time blackbox PIT for constant-width ROABPs (for

unknown var. order and all fields).

• Poly-time blackbox PIT for sum of unbounded-many

log-variate, constant-width ROABPs.
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