Lower bounds on the sum of 25”-powers of univariates lead

to complete derandomization of PIT

Pranjal Dutta (CMI & IIT Kanpur) Nitin Saxena (IIT Kanpur)
Thomas Thierauf (Aalen University)

SIGTACS Webinar @CSE, IITK

Table of contents

1. Introduction

2. Conjecture C1 and Algebraic Complexity

3. Circuit Normal Form (CNF) and Algebraic Complexity
4. Proof Idea of Main Theorems

5. Conclusion

Introduction

Sum of r-powers

Sum of r'"-powers

For a univariate polynomial f(x) € F[x] over a field F, and a positive integer
r, we say that f is computed as a sum of r'-powers, if

Sum of r'"-powers

For a univariate polynomial f(x) € F[x] over a field F, and a positive integer
r, we say that f is computed as a sum of r'-powers, if

S
f=> 6, (1)
i=1

for some s > 1, ¢; € Fand £;(x) € F[x].

Sum of r'"-powers

For a univariate polynomial f(x) € F[x] over a field F, and a positive integer
r, we say that f is computed as a sum of r'-powers, if

S
f=> 6, (1)
i=1

for some s > 1, ¢; € Fand £;(x) € F[x].

* The sum of r-powers is a complete model (for large enough F).

Sum of r'"-powers

For a univariate polynomial f(x) € F[x] over a field F, and a positive integer
r, we say that f is computed as a sum of r'-powers, if

S
f=> 6, (1)
i=1

for some s > 1, ¢; € Fand £;(x) € F[x].

* The sum of r-powers is a complete model (for large enough F).
Because, for any distinct A;, there are ¢; € F such that

) =) e (F) +)"
i=0

Sum of r'"-powers

For a univariate polynomial f(x) € F[x] over a field F, and a positive integer
r, we say that f is computed as a sum of r'-powers, if

S
f=> 6, (1)
i=1

for some s > 1, ¢; € Fand £;(x) € F[x].

* The sum of r-powers is a complete model (for large enough F).
Because, for any distinct A;, there are ¢; € F such that

) =) e (F) +)"
i=0

* For a fixed f, r, s representation Eqn. (1) might not exist.

Sum of r'"-powers

For a univariate polynomial f(x) € F[x] over a field F, and a positive integer
r, we say that f is computed as a sum of r'-powers, if

S
f=> 6, (1)
i=1

for some s > 1, ¢; € Fand £;(x) € F[x].

* The sum of r-powers is a complete model (for large enough F).
Because, for any distinct A;, there are ¢; € F such that

) =) e (F) +)"
i=0

* For a fixed f, r, s representation Eqn. (1) might not exist.
Eg. (x+1)™*" = ¢; - €} + ¢ - £} is not possible!

New Measure

New Measure

* A natural complexity measure in (1) is the support-union size, namely
the number of distinct monomials in the representation, ‘ U, supp(t’,-)|
where support supp(€) denotes the set of nonzero monomials in the
polynomial €.

New Measure

* A natural complexity measure in (1) is the support-union size, namely
the number of distinct monomials in the representation, ‘ U, supp(t’,-)|
where support supp(€) denotes the set of nonzero monomials in the
polynomial €.

Eg. (s = 1) Let (x +1)4 = ¢/ wherer | d. So, ¢ = (x +1)%/". Thus,
supp(4y) = {x°,...,x%"} = |supp(¢1)| =d/r+1.

New Measure

* A natural complexity measure in (1) is the support-union size, namely
the number of distinct monomials in the representation, ‘ U, supp(t’,-)|
where support supp(€) denotes the set of nonzero monomials in the
polynomial €.

Eg. (s = 1) Let (x +1)4 = ¢/ wherer | d. So, ¢ = (x +1)%/". Thus,
supp(4y) = {x°,...,x%"} = |supp(¢1)| =d/r+1.

* The support-union size of f with respect to r and s, denoted Ug(f, r, s) is
defined as the minimum support-union size when f is written in the
form (1), and oo, if no such representation exists.

New Measure

* A natural complexity measure in (1) is the support-union size, namely
the number of distinct monomials in the representation, ‘ U, supp(t’,-)|
where support supp(€) denotes the set of nonzero monomials in the
polynomial €.

Eg. (s = 1) Let (x +1)4 = ¢/ wherer | d. So, ¢ = (x +1)%/". Thus,
supp(4y) = {x°,...,x%"} = |supp(¢1)| =d/r+1.

* The support-union size of f with respect to r and s, denoted Ug(f, r, s) is
defined as the minimum support-union size when f is written in the
form (1), and oo, if no such representation exists.

* Observe: [supp({")| < [supp(¢)|” forr > 1.

New Measure

* A natural complexity measure in (1) is the support-union size, namely
the number of distinct monomials in the representation, ‘ U, supp(f,-)|
where support supp(€) denotes the set of nonzero monomials in the
polynomial €.

Eg. (s = 1) Let (x +1)4 = ¢/ wherer | d. So, ¢ = (x +1)%/". Thus,
supp(4y) = {x°,...,x%"} = |supp(¢1)| =d/r+1.

* The support-union size of f with respect to r and s, denoted Ug(f, r, s) is
defined as the minimum support-union size when f is written in the
form (1), and oo, if no such representation exists.

* Observe: |supp(¢)| < |supp(¢)|” for r > 1. Thus, for all f,r, s:

Ur(f,r,s) > Q(|supp(f)|'/")

Understanding U((x + 1)%,r, ")

Understanding U((x + 1)%,r, ")

Fix the notations: fy(x) := (x +1)? and F = Q.

Understanding U((x + 1)%,r, ")

Fix the notations: fy(x) := (x +1)? and F = Q.

Question: What can we say about Ug(fy,r,)?

Understanding U((x + 1)%,r, ")

Fix the notations: fy(x) := (x +1)? and F = Q.

Question: What can we say about Ug(fy, r, -)? Here are few observations:

e Fors=1,ifr | d,thenwehave’U;(fd,rJ) =d/r+1 ‘

Understanding U((x + 1)%,r, ")

Fix the notations: fy(x) := (x +1)? and F = Q.

Question: What can we say about Ug(fy, r, -)? Here are few observations:

e Fors=1,ifr | d,thenwehave’U;(fd,rJ) =d/r+1 ‘

e For s = 2, we show that’ Up(fy,r,2) > d/r+1 ‘

Understanding U((x + 1)%,r, ")

Fix the notations: fy(x) := (x +1)? and F = Q.

Question: What can we say about Ug(fy, r, -)? Here are few observations:

e Fors=1,ifr | d,thenwehave’U;(fd,rJ) =d/r+1 ‘

e For s = 2, we show that’ Up(fy,r,2) > d/r+1 ‘

e (Small s). For s =r + 1 and any d, we show that

’U]F(fd,l',r+1) < d/r+r ‘

Understanding U((x + 1)%,r, ")

Fix the notations: fy(x) := (x +1)? and F = Q.

Question: What can we say about Ug(fy, r, -)? Here are few observations:

e Fors=1,ifr | d,thenwehave’U;(fd,rJ) =d/r+1 ‘

e For s = 2, we show that’ Up(fy,r,2) > d/r+1 ‘

e (Small s). For s =r + 1 and any d, we show that

’U]F(fd,l',r+1) < d/r+r ‘

e (Large s). Fors > ¢ - (d + 1) for any ¢ > r, we show that

|Uslia.r,s) < O(d')")

Understanding U((x + 1)%,r, ")

Fix the notations: fy(x) := (x +1)? and F = Q.

Question: What can we say about Ug(fy, r, -)? Here are few observations:

e Fors=1,ifr | d,thenwehave’U;(fd,rJ) =d/r+1 ‘

e For s = 2, we show that’ Up(fy,r,2) > d/r+1 ‘

e (Small s). For s =r + 1 and any d, we show that

’U]F(fd,l',r+1) < d/r+r ‘

e (Large s). Fors > ¢ - (d + 1) for any ¢ > r, we show that

|Uslia.r,s) < O(d')")

Thus, for large s, we get Ug(fy,r,s) = O d'/"), which resolves this case.

Support-union Conjecture

Support-union Conjecture

For technical reasons, we will restrict d to the domain

I={r"=1|meN}.

Support-union Conjecture

For technical reasons, we will restrict d to the domain
I:={r"=1|meN}.

Motivated from the examples above, we could conjecture the following.

Support-union Conjecture

For technical reasons, we will restrict d to the domain
I ={r"-1|meN}.

Motivated from the examples above, we could conjecture the following.

For s < d and a constant prime-power r,
Ug(fg,r,s) = d/r

for all large enough d € /..

Support-union Conjecture

For technical reasons, we will restrict d to the domain
I ={r"-1|meN}.

Motivated from the examples above, we could conjecture the following.

For positive constant 61 < 1 and a constant prime-power r,
Up(fq,r,d®) > d/r

for all large enough d € /..

Support-union Conjecture

For technical reasons, we will restrict d to the domain
I ={r"-1|meN}.

Motivated from the examples above, we conjecture the following.

For positive constants 61 < 1,2 > 1 and a constant prime-power r,
Us(fg,r,d%) > d/r

for all large enough d € /..

Support-union Conjecture

For technical reasons, we will restrict d to the domain
I ={r"-1|meN}.

Motivated from the examples above, we conjecture the following.

For positive constants 61 < 1,2 > 1 and a constant prime-power r,
Ug(fy,r,d®) > d/ro:

for all large enough d € /..

There are other intricate polynomial families for which we suspect that C1 is

true; for e.g. [Tieq1(x — 1), X, 2 x.

Support-union Conjecture

For technical reasons, we will restrict d to the domain
I ={r"=1|meN}.

Motivated from the examples above, we conjecture the following.

Support-union Conjecture (C1)
For positive constants 61 < 1,o > 1 and a constant prime-power r,

Us(fg,r,d®) > d/r
for all large enough d € /..
There are other intricate polynomial families for which we suspect that C1 is
true; for e.g. [Tjea1(x =1, 2o 2 x.

Reason to choose fy is that it is a very simple polynomial.

Conjecture C1 over Z (Integer ring)

Conjecture C1 over Z (Integer ring)

C1 over Z
Conjecture C1 holds true over Z.

Conjecture C1 over Z (Integer ring)

C1 over Z
Conjecture C1 holds true over Z.

Proof.

If r = p’ for some prime p and £ € N, then for d € /,:

d
(i) = x1modp = |supp(fy modp)|=d+1.

Conjecture C1 over Z (Integer ring)

C1 over Z
Conjecture C1 holds true over Z.

Proof.

If r = p’ for some prime p and £ € N, then for d € /,:

d
(i) = x1modp = |supp(fy modp)|=d+1.

Observe: €;(x)" = £;(x") mod p and \ Ui supp(f;(x))| = | Ui supp(f,-(xr))|.

Conjecture C1 over Z (Integer ring)

C1 over Z
Conjecture C1 holds true over Z.

Proof.

If r = p’ for some prime p and £ € N, then for d € /,:

d
(i) = x1modp = |supp(fy modp)|=d+1.

Observe: €;(x)" = £;(x") mod p and \ Ui supp(f;(x))| = | Ui supp(f,-(xr))|.

fd = Zci'f/-r

Conjecture C1 over Z (Integer ring)

C1 over Z
Conjecture C1 holds true over Z.

Proof.

If r = p’ for some prime p and £ € N, then for d € /,:

d
(i) = x1modp = |supp(fy modp)|=d+1.

Observe: €;(x)" = £;(x") mod p and \ Ui supp(f;(x))| = | U; supp(f,-(xr))|.
= Z ci-t{ = fymodp = Z ¢ - €i(x") mod p

Conjecture C1 over Z (Integer ring)

C1 over Z
Conjecture C1 holds true over Z.

Proof.

If r = p’ for some prime p and £ € N, then for d € /,:

d

(i) = x1modp = |supp(fy modp)|=d+1.

Observe: €;(x)" = £;(x") mod p and \ Ui supp(f;(x))| = | U; supp(f,-(xr))|.
fy = Z ci-t{ = fymodp = Z ¢ - ;(x") mod p

= |Usupp(€,-)| >d+1

Conjecture C1 over Z (Integer ring)

C1 over Z
Conjecture C1 holds true over Z.

Proof.

If r = p’ for some prime p and £ € N, then for d € /,:

d
(i) = x1modp = |supp(fy modp)|=d+1.

Observe: €;(x)" = £;(x") mod p and \ Ui supp(f;(x))| = | U; supp(f,-(xr))|.
= Z ci-t{ = fymodp = Z ¢ - €i(x") mod p

= |Usupp(€,-)| >d+1

= Up(fy,r,") >d+1>d/r

Conjecture C1 and Algebraic
Complexity

Two Important Questions

w(1)

 Valiant’s Hypothesis: Prove that symbolic perm, requires n®'"-size

circuit.

VP vs. VNP

» Valiant’s Hypothesis: Prove that symbolic perm, requires n®(")-size

circuit. An equivalent version is: Prove | VP # VNP |.

VP vs. VNP

* Valiant’s Hypothesis: Prove that symbolic perm, requires n*(")-size
circuit. An equivalent version is: Prove | VP # VNP |.

o VP : A family {f,}, € VP (over F) if f, is a poly(n)-variate polynomial,
of degree poly(n) over F, computed by poly(n)-size circuit.

VP vs. VNP

« Valiant’s Hypothesis: Prove that symbolic perm, requires n®(")-size
circuit. An equivalent version is: Prove | VP # VNP |.

* VP : A family {f,}, € VP (over F) if f, is a poly(n)-variate polynomial,
of degree poly(n) over F, computed by poly(n)-size circuit.

e VNP : A family {f,}, € VNP (over F) if 3{g,}, € VP & t(n) = poly(n):

) = D gaxw)|.

we{01)t

VP vs. VNP

» Valiant’s Hypothesis: Prove that symbolic perm,, requires n®(")-size
circuit. An equivalent version is: Prove | VP # VNP |.

VP : A family {f,}, € VP (over F) if f, is a poly(n)-variate polynomial,

of degree poly(n) over F, computed by poly(n)-size circuit.

o VNP : A family {f,}, € VNP (over F) if 3{g,}, € VP & t(n) = poly(n):

) = D gaxw)|.

we (0,10

o {fo}n € VNP = f, is explicit.

VP vs. VNP

» Valiant’s Hypothesis: Prove that symbolic perm, requires n®(")-size
circuit. An equivalent version is: Prove | VP # VNP |.

* VP : A family {f,}, € VP (over F) if f, is a poly(n)-variate polynomial,
of degree poly(n) over F, computed by poly(n)-size circuit.

o VNP : A family {f,}, € VNP (over F) if 3{g,}, € VP & t(n) = poly(n):

) = D gaxw)|.

we{0,1)t

* {fu}n € VNP = f, is explicit.

* Sufficient explicitness (Valiant’s Criterion):

VP vs. VNP

« Valiant’s Hypothesis: Prove that symbolic perm, requires n(")-size
circuit. An equivalent version is: Prove | VP # VNP |.

* VP : A family {f,}, € VP (over F) if f, is a poly(n)-variate polynomial,
of degree poly(n) over F, computed by poly(n)-size circuit.

o VNP : A family {f,}, € VNP (over F) if 3{g,}, € VP & t(n) = poly(n):

W) =), gEw)|.

we{0,1}(m

o {fo}n € VNP = f, is explicit.
* Sufficient explicitness (Valiant’s Criterion): Suppose ¢ : {0,1}* - N
is a function in the class P. Then, the family {f,}, € VNP if

hE) =). éex°.

ec{0,1}"

VP vs. VNP

« Valiant’s Hypothesis: Prove that symbolic perm, requires n(")-size
circuit. An equivalent version is: Prove | VP # VNP |.

* VP : A family {f,}, € VP (over F) if f, is a poly(n)-variate polynomial,
of degree poly(n) over F, computed by poly(n)-size circuit.

o VNP : A family {f,}, € VNP (over F) if 3{g,}, € VP & t(n) = poly(n):

W) =), gEw)|.

we{0,1}(m

o {fo}n € VNP = f, is explicit.
* Sufficient explicitness (Valiant’s Criterion): Suppose ¢ : {0,1}* - N
is a function in the class P/poly. Then, the family {f,}, € VNP if
)= > de)x.

ec{0,1}"

VP vs. VNP

« Valiant’s Hypothesis: Prove that symbolic perm, requires n(")-size
circuit. An equivalent version is: Prove | VP # VNP |.

* VP : A family {f,}, € VP (over F) if f, is a poly(n)-variate polynomial,
of degree poly(n) over F, computed by poly(n)-size circuit.

o VNP : A family {f,}, € VNP (over F) if 3{g,}, € VP & t(n) = poly(n):

W) =), gEw)|.

we{0,1}(m

o {fo}n € VNP = f, is explicit.
* Sufficient explicitness (Valiant’s Criterion): Suppose ¢ : [0,c]* —» N
is a function in the class P/poly. Then, the family {f,}, € VNP if
)= > ge)x.

ec[0,c]”

Polynomial Identity Testing

Polynomial Identity Testing

* Polynomial Identity Testing (PIT): Given a circuit C, test whether C
computes the zero polynomial (deterministically).

Polynomial Identity Testing

* Polynomial Identity Testing (PIT): Given a circuit C, test whether C
computes the zero polynomial (deterministically).

* Blackbox-PIT asks for an algorithm to test the zeroness of a given
algebraic circuit via mere query access.

Polynomial Identity Testing

* Polynomial Identity Testing (PIT): Given a circuit C, test whether C
computes the zero polynomial (deterministically).

* Blackbox-PIT asks for an algorithm to test the zeroness of a given
algebraic circuit via mere query access.

» Hitting sets: Find a set of points H such that any “small” circuit C that is
computing a nonzero polynomial must satisfy C(a) # 0 for some a € H.

Polynomial Identity Testing

* Polynomial Identity Testing (PIT): Given a circuit C, test whether C
computes the zero polynomial (deterministically).

* Blackbox-PIT asks for an algorithm to test the zeroness of a given
algebraic circuit via mere query access.

» Hitting sets: Find a set of points H such that any “small” circuit C that is
computing a nonzero polynomial must satisfy C(a) # 0 for some a € H.

Polynomial Identity Lemma (Ore, Demillo-Lipton, Schwartz, Zippel)
If P(x) is a nonzero polynomial of degree d, and S C F of size at least
d +1, then P(a) # 0 for some a € S".

Polynomial Identity Testing

* Polynomial Identity Testing (PIT): Given a circuit C, test whether C
computes the zero polynomial (deterministically).

* Blackbox-PIT asks for an algorithm to test the zeroness of a given
algebraic circuit via mere query access.

» Hitting sets: Find a set of points H such that any “small” circuit C that is
computing a nonzero polynomial must satisfy C(a) # 0 for some a € H.

Polynomial Identity Lemma (Ore, Demillo-Lipton, Schwartz, Zippel)
If P(x) is a nonzero polynomial of degree d, and S C F of size at least

d +1, then P(a) # 0 for some a € S".

This above lemma puts PIT € RP.

VP # VNP & Efficient PIT

VP # VNP Explicit Hitting Sets

VP # VNP & Efficient PIT

KI03, AGS19

VP # VNP Explicit Hitting Sets

VP # VNP & Efficient PIT

KI03, AGS19

VP # VNP Explicit Hitting Sets

KIO3

VP # VNP & Efficient PIT

KI03, AGS19

VP # VNP Explicit Hitting Sets

KI03 GKSS19

| constant (> 4)-variate explicit hard polynomial

VP # VNP & Efficient PIT

KI03, AGS19

VP # VNP Explicit Hitting Sets

KI03 GKSS19

| constant (> 4)-variate explicit hard polynomial

f(x) =35, Q7. deg(Q) < tande = w(1) = s> (d/p)*"

VP # VNP & Efficient PIT

K103, AGS19

VP # VNP Explicit Hitting Sets

KIO3 GKSS19
AV08, Koil2

| constant (> 4)-variate explicit hard polynomial

f(x) =35, Q% deg(Q) < tande = w(1) = s> (d/H)*"

Connecting Conjecture C1 to Algebraic Complexity

| Conjecture C1 holds for an r > 25 |

KI03, AGS19

VP # VNP Explicit Hitting Sets

KI03 GKSS19
AV08, Koil2

| constant (> 4)-variate explicit hard polynomial

f(x) =27, Q% deg(Q) <tand e = w(1) = s> (d/t)*"

Connecting Conjecture C1 to Algebraic Complexity

| Conjecture C1 holds for an r > 25 |

KI03, AGS19

VP # VNP Explicit Hitting Sets

KI03 GKSS19
AV08, Koil2

| constant (> 4)-variate explicit hard polynomial

f(x) =27, Q% deg(Q) <tand e = w(1) = s> (d/t)*"

Connecting Conjecture C1 to Algebraic Complexity

| Conjecture C1 holds for an r > 25 |

Assume GRH K103, AGS19

VP # VNP Explicit Hitting Sets

KI03 GKSS19
AV08, Koil2

| constant (> 4)-variate explicit hard polynomial

f(x) =27, Q% deg(Q) <tand e = w(1) = s> (d/t)*"

Connecting Conjecture C1 to Algebraic Complexity

| Conjecture C1 holds for an r > 25 |

Assume GRH K103, AGS19

VP # VNP Explicit Hitting Sets

KI03 GKSS19
AV08, Koil2

| constant (> 4)-variate explicit hard polynomial

f(x) =27, Q% deg(Q) <tand e = w(1) = s> (d/t)*"

Conjecture C1 and Algebraic Complexity

Recall Conjecture C1.

Conjecture C1 and Algebraic Complexity

dor
Cl: |(x+1)? = Zf,’ . |Usupp(£,-)| > d/r% = Q(d)|.
i=1 i

I

Conjecture C1 and Algebraic Complexity

dot
Cl: |(x+1)? = Zf; = |Usupp({’;)| > d/r® = Q(d)]|.
i=1 i

Theorem 1: Conjecture C1 to PIT
If Conjecture C1 holds for an r > 25, then blackbox-PIT € P.

Conjecture C1 and Algebraic Complexity

do1
Cl: |(x+1)? = Zf,’ . |Usupp(€,-)| > d/r% = Q(d)|.
i=1 i

I

Theorem 1: Conjecture C1 to PIT
If Conjecture C1 holds for an r > 25, then blackbox-PIT € P.

Theorem 2: Conjecture C1 to VP # VNP
Assume GRH, and Conjecture C1 holds for an r > 25, then VP # VNP.

Conjecture C1 and Algebraic Complexity

Theorem 1: Conjecture C1 to PIT
If Conjecture C1 holds for an r > 25, then blackbox-PIT € P.

Theorem 2: Conjecture C1 to VP # VNP
Assume GRH, and Conjecture C1 holds for an r > 25, then VP # VNP.

Theorem 2 is reminiscent to the following:

Conjecture C1 and Algebraic Complexity

Theorem 1: Conjecture C1 to PIT
If Conjecture C1 holds for an r > 25, then blackbox-PIT € P.

Theorem 2: Conjecture C1 to VP # VNP
Assume GRH, and Conjecture C1 holds for an r > 25, then VP # VNP.

Theorem 2 is reminiscent to the following:

Strong lower bound on sum-of-squares in non-commutative settings

implies Permanent is hard [HWY11].

More on Conjecture C1 and Theorem 1-2

More on Conjecture C1 and Theorem 1-2

* There are other candidate polynomials for C1, for eg. [[;c[q) (X — 1),
4, 2°x'. CI holds for them implies Theorem 1 & 2.

More on Conjecture C1 and Theorem 1-2

* There are other candidate polynomials for C1, for eg. [[;c[q) (X — 1),
4, 2°x'. CI holds for them implies Theorem 1 & 2.

« Cl holds for $%, 2”x’ implies VP # VNP without GRH!

More on Conjecture C1 and Theorem 1-2

* There are other candidate polynomials for C1, for eg. [[;c[q) (X — 1),
4, 2°x'. CI holds for them implies Theorem 1 & 2.

« Cl holds for $%, 2”x’ implies VP # VNP without GRH!

o It is enough to consider poly-degree restriction on ¢;. In fact, for
Theorem 1, we can assume deg(¢;) = O(d) while for Theorem 2, we
can assume deg(¢;) = O(d logd).

More on Conjecture C1 and Theorem 1-2

* There are other candidate polynomials for C1, for eg. [[;c[q) (X — 1),
4, 2°x'. CI holds for them implies Theorem 1 & 2.

« Cl holds for $%, 2”x’ implies VP # VNP without GRH!

o It is enough to consider poly-degree restriction on ¢;. In fact, for
Theorem 1, we can assume deg(¢;) = O(d) while for Theorem 2, we
can assume deg(¢;) = O(d logd).

e There is a relaxed version of C1 where, instead of the measure
| U supp(£:)|, we look at 3, [supp(&)].

More on Conjecture C1 and Theorem 1-2

* There are other candidate polynomials for C1, for eg. [[;c[q) (X — 1),
4, 2°x'. CI holds for them implies Theorem 1 & 2.

« Cl holds for $%, 2”x’ implies VP # VNP without GRH!

o It is enough to consider poly-degree restriction on ¢;. In fact, for
Theorem 1, we can assume deg(¢;) = O(d) while for Theorem 2, we
can assume deg(¢;) = O(d logd).

e There is a relaxed version of C1 where, instead of the measure
| U supp(£:)|, we look at 3, [supp(&)].
o We call it Sg(f, r,s). Trivially, Ug(f,r,s) < Sg(f,r,s).

More on Conjecture C1 and Theorem 1-2

* There are other candidate polynomials for C1, for eg. [[;c[q) (X — 1),
4, 2°x'. CI holds for them implies Theorem 1 & 2.

« Cl holds for $%, 2”x’ implies VP # VNP without GRH!

o It is enough to consider poly-degree restriction on ¢;. In fact, for
Theorem 1, we can assume deg(¢;) = O(d) while for Theorem 2, we
can assume deg(¢;) = O(d logd).

e There is a relaxed version of C1 where, instead of the measure
| U supp(£:)|, we look at 3, [supp(&)].
o We call it Sg(f, r,s). Trivially, Ug(f,r,s) < Sg(f,r,s).

* We could similarly conjecture (C2) that Sg(fy,r, -) is large.

More on Conjecture C1 and Theorem 1-2

* There are other candidate polynomials for C1, for eg. [[;c[q) (X — 1),
4, 2°x'. CI holds for them implies Theorem 1 & 2.

« Cl holds for $%, 2”x’ implies VP # VNP without GRH!

o It is enough to consider poly-degree restriction on ¢;. In fact, for
Theorem 1, we can assume deg(¢;) = O(d) while for Theorem 2, we
can assume deg(¢;) = O(d logd).

e There is a relaxed version of C1 where, instead of the measure
| U supp(£:)|, we look at 3, [supp(&)].
o We call it Sg(f, r,s). Trivially, Ug(f,r,s) < Sg(f,r,s).

* We could similarly conjecture (C2) that Sg(fy,r, -) is large.

e C2 and GRH implies VP # VNP;

More on Conjecture C1 and Theorem 1-2

* There are other candidate polynomials for C1, for eg. [[;c[q) (X — 1),
4, 2°x'. CI holds for them implies Theorem 1 & 2.

« Cl holds for $%, 2”x’ implies VP # VNP without GRH!

o It is enough to consider poly-degree restriction on ¢;. In fact, for
Theorem 1, we can assume deg(¢;) = O(d) while for Theorem 2, we
can assume deg(¢;) = O(d logd).

e There is a relaxed version of C1 where, instead of the measure
| U supp(£:)|, we look at 3, [supp(&)].
o We call it Sg(f, r,s). Trivially, Ug(f,r,s) < Sg(f,r,s).

* We could similarly conjecture (C2) that Sg(fy,r, -) is large.

* C2 and GRH implies VP # VINP; it’s not clear whether it implies PIT € P.

Circuit Normal Form (CNF) and
Algebraic Complexity

An Important CNF

An Important CNF

e It was established in [VSBRS83, Sap19] that an n-variate, degree d
polynomial f(x), computed by a circuit of size s, can be decomposed as

An Important CNF

e It was established in [VSBRS83, Sap19] that an n-variate, degree d
polynomial f(x), computed by a circuit of size s, can be decomposed as

»
f(X) = D fufia-fig - fa - fis
i=1

An Important CNF

e It was established in [VSBRS83, Sap19] that an n-variate, degree d
polynomial f(x), computed by a circuit of size s, can be decomposed as

»
f(X) = D fufia-fig - fa - fis
i=1

where

1. top-fanin s’ = poly(s, d),

An Important CNF

e It was established in [VSBRS83, Sap19] that an n-variate, degree d
polynomial f(x), computed by a circuit of size s, can be decomposed as

»
f(X) = D fufia-fig - fa - fis
i=1

where
1. top-fanin s’ = poly(s, d),

2. where each fj has circuit size at most poly(s, d)

An Important CNF

e It was established in [VSBRS83, Sap19] that an n-variate, degree d
polynomial f(x), computed by a circuit of size s, can be decomposed as

»
f(X) = D fufia-fig - fa - fis
i=1

where
1. top-fanin s’ = poly(s, d),
2. where each fj has circuit size at most poly(s, d)

3. deg(fy) < d/2, foralli,j.

An Important CNF

e It was established in [VSBRS83, Sap19] that an n-variate, degree d
polynomial f(x), computed by a circuit of size s, can be decomposed as

»
f(X) = D fufia-fig - fa - fis
i=1

where
1. top-fanin s’ = poly(s, d),
2. where each fj has circuit size at most poly(s, d)

3. deg(fy) < d/2, foralli,j.

e This circuit normal-form (CNF) has played a key role in all recent
depth-reduction results [AV08, Koil2, GKKS13, Tav15].

CNF to sum of 25-product

CNF to sum of 25-product

Given d-degree f(x), computed by size-s circuit, we decompose f as

poly(s,d)
f(x) = Z fi1 - fio - iz - fig - fis
p

CNF to sum of 25-product

Given d-degree f(x), computed by size-s circuit, we decompose f as

poly(s,d)
f(x) = Z fi1 - fio - iz - fig - fis
p

size(fj) = poly(s, d) and deg(f;) < d/2.

CNF to sum of 25-product

Given d-degree f(x), computed by size-s circuit, we decompose f as

poly(s,d)
f(x) = Z fi1 - fio - iz - fig - fis
p

size(f;) = poly(s, d) and deg(fj) < d/2. Apply CNF to each of f; to get:

CNF to sum of 25-product

Given d-degree f(x), computed by size-s circuit, we decompose f as

poly(s,d)
f(x) = Z fi1 - fio - iz - fig - fis
p

size(f;) = poly(s, d) and deg(fj) < d/2. Apply CNF to each of f; to get:

poly(s,d)

5
f(x) = Z [T

=1

CNF to sum of 25-product

Given d-degree f(x), computed by size-s circuit, we decompose f as

poly(s,d)
f(x) = Z fi1 - fio - iz - fig - fis
p

size(f;) = poly(s, d) and deg(fj) < d/2. Apply CNF to each of f; to get:

poly(s,d)

5
=2, [l#

CNF to sum of 25-product

Given d-degree f(x), computed by size-s circuit, we decompose f as

poly(s,d)
f(x) = Z fi1 - fio - iz - fig - fis
p

size(f;) = poly(s, d) and deg(fj) < d/2. Apply CNF to each of f; to get:

poly(s,d)

5
®="% []s
j=1

CNF to sum of 25-product

Given d-degree f(x), computed by size-s circuit, we decompose f as

poly(s,d)
f(x) = Z fi1 - fio - iz - fig - fis
p

size(f;) = poly(s, d) and deg(fj) < d/2. Apply CNF to each of f; to get:

poly(s.d) 5
(= > [l
i=1 j=1
poly(s,d) 5 (poly(s,d) 5
(7% T
i=1 =1 k=1 =1
oly(s,d) 25 a b ¢ b? a-c

CNF to sum of 25-product

Given d-degree f(x), computed by size-s circuit, we decompose f as
poly(s,d)
f(x) = Z fi1 - fio - iz - fig - fis
i=1

size(f;) = poly(s, d) and deg(fj) < d/2. Apply CNF to each of f; to get:

poly(s,d)

f(x) =

Note that deg(g;) < d/4.

CNF to sum of 25"-powers

CNF to sum of 25"-powers

Fischer’s Trick (Fischer94)

[F be a field of characteristic 0 or > m. One can write g = [[;c[m) gi as:

CNF to sum of 25"-powers

Fischer’s Trick (Fischer94)

[F be a field of characteristic 0 or > m. One can write g = [[;c[m) gi as:
2/77
9=01"G . ..gn=) c-h
j=1

where ¢; € IF and h; € spang (g; | i € [m]), forj € [27].

CNF to sum of 25"-powers

Fischer’s Trick (Fischer94)

[F be a field of characteristic 0 or > m. One can write g = [[;c[m) gi as:
2/77
9=91G - Gn =) c-H
j=1
where ¢; € IF and h; € spang (g; | i € [m]), forj € [27].

From previous slide, we expressed d-degree s-sized f(x) = 2. [[g; with
deg(gy) < d/4.

CNF to sum of 25"-powers

Fischer’s Trick (Fischer94)

[F be a field of characteristic 0 or > m. One can write g = [[;c[m) gi as:
2/77
9=91G - Gn =) c-H
j=1
where ¢; € IF and h; € spang (g; | i € [m]), forj € [27].

From previous slide, we expressed d-degree s-sized f(x) = 2. [[g; with
deg(gj) < d/4. Apply Fischer’s trick on each [];c (25 gy to get:

poly(s,d) 25

(0= > [|a

=t =1

CNF to sum of 25"-powers

Fischer’s Trick (Fischer94)

[F be a field of characteristic 0 or > m. One can write g = [[;c[m) gi as:

2/77
9=01"G . ..gn=) c-h

j=1

where ¢; € IF and h; € spang (g; | i € [m]), forj € [27].

From previous slide, we expressed d-degree s-sized f(x) = 2. [[g; with

deg(gj) < d/4. Apply Fischer’s trick on each [];c (25 gy to get:

poly(s,d) 25

f(%) = Z E[g,-,-

poly(s,d)

1l
o
«Q

i=1

CNF to sum of 25"-powers

Fischer’s Trick (Fischer94)

[F be a field of characteristic 0 or > m. One can write g = [[;c[m) gi as:
2/77
9=91G - Gn =) c-H
j=1
where ¢; € IF and h; € spang (g; | i € [m]), forj € [27].

From previous slide, we expressed d-degree s-sized f(x) = 2. [[g; with
deg(gj) < d/4. Apply Fischer’s trick on each [];c (25 gy to get:

poly(s.d) 25
)= > [l
= j=1
poly(s,d)
ci- g% where deg(g;) < d/4.

i=1

m" power to sum of r’-power

m" power to sum of r’-power

Sum-Identity Lemma (DST20)

Let FF be a field of characteristic 0 or large. Let h(x) € F[x] and0 < m <r.

There exist ¢y, ; € F and distinct A; € F, for 0 < i < r, such that
r

h(x)™ =) cmi (h(X) +)"

i=0

m" power to sum of r’-power

Sum-Identity Lemma (DST20)

Let FF be a field of characteristic 0 or large. Let h(x) € F[x] and0 <m < r.

There exist ¢y, ; € F and distinct A; € F, for 0 < i < r, such that
r

hG™ =) emi (W) +)"

i=0

Proof Sketch.

m" power to sum of r’-power

Sum-Identity Lemma (DST20)

Let FF be a field of characteristic 0 or large. Let h(x) € F[x] and0 <m < r.

There exist ¢y, ; € F and distinct A; € F, for 0 < i < r, such that
r

hG™ =) emi (W) +)"

i=0

Proof Sketch.
Consider (h(x) +1)" = X[, ()" -t

m" power to sum of r’-power

Sum-Identity Lemma (DST20)

Let FF be a field of characteristic 0 or large. Let h(x) € F[x] and0 <m < r.

There exist ¢y, ; € F and distinct A; € F, for 0 < i < r, such that
r

hG™ =) emi (W) +)"

i=0

Proof Sketch.
Consider (h(x) +1)" = X/_, ())h" - t"~'. Asm < r, one of the ' must be h™.

m" power to sum of r’-power

Sum-Identity Lemma (DST20)

Let FF be a field of characteristic 0 or large. Let h(x) € F[x] and0 <m < r.

There exist ¢y, ; € F and distinct A; € F, for 0 < i < r, such that
r

hGO™ = " emi (h(3) +)"
i=0
Proof Sketch.

Consider (h(x) +1)" = X/_, ())h" - t"~'. Asm < r, one of the ' must be h™.
Interpolate at t = A; for 0 < i < r (r + 1-many distinct points).

m" power to sum of r’-power

Sum-Identity Lemma (DST20)
Let FF be a field of characteristic 0 or large. Let h(x) € F[x] and0 <m < r.

There exist ¢y, ; € F and distinct A; € F, for 0 < i < r, such that
r

hG™ =) emi (W) +)"

i=0

Proof Sketch.
Consider (h(x) +1)" = X/_, ())h" - t"~'. Asm < r, one of the ' must be h™.
Interpolate at t = A; for 0 < i < r (r + 1-many distinct points).

@1 ()" .. (g | (h(X) + o)
(047 ()7 (AE S L R (SRR
QG)| |m (h(X) +2,)"

CNF to sum of constant r'-power

We have already established that n-variate, d-degree f(x) computed by size-s
circuit can be written as poly(s, d)-many sum of 25"-powers of degree at
most d/4.

CNF to sum of constant r'-power

We have already established that n-variate, d-degree f(x) computed by size-s
circuit can be written as poly(s, d)-many sum of 25"-powers of degree at
most d/4. Using the Sum-Identity lemma, for r > 25, we get:

CNF to sum of constant r'-power

We have already established that n-variate, d-degree f(x) computed by size-s
circuit can be written as poly(s, d)-many sum of 25"-powers of degree at
most d/4. Using the Sum-Identity lemma, for r > 25, we get:

poly(s,d)

= > &g

i=1

CNF to sum of constant r'-power

We have already established that n-variate, d-degree f(x) computed by size-s
circuit can be written as poly(s, d)-many sum of 25"-powers of degree at
most d/4. Using the Sum-Identity lemma, for r > 25, we get:

poly(s,d)

f(x) ¢ g2

i=1
poly(s,d)

(20,-]-~(g,-+/lj)’)

i=1 j=0

CNF to sum of constant r'-power

We have already established that n-variate, d-degree f(x) computed by size-s
circuit can be written as poly(s, d)-many sum of 25"-powers of degree at
most d/4. Using the Sum-Identity lemma, for r > 25, we get:

poly(s,d)

f(x) ¢ g2

i=1
poly(s,d) r
(ZCI‘/‘ : (g,-+/l,-)’)
j=0
(r+1) -poly (s,d)
¢ -G

i=1

i=1

CNF to sum of constant r'-power

We have already established that n-variate, d-degree f(x) computed by size-s
circuit can be written as poly(s, d)-many sum of 25"-powers of degree at
most d/4. Using the Sum-Identity lemma, for r > 25, we get:

poly(s,d)

f(x) ¢ g2

i=1
poly(s,d)

.
(Zc,-,- : (gi”/)’)
i=1 j=0
(r+1) -poly (s,d)

¢/-6 wheredeg(gy) <d/4andc/ € F

i=1

CNF to sum of constant r'-power

We have already established that n-variate, d-degree f(x) computed by size-s
circuit can be written as poly(s, d)-many sum of 25"-powers of degree at
most d/4. Using the Sum-Identity lemma, for r > 25, we get:

poly(s,d)
f(x) = % G
i=1
poly(s,d) r
= (Zcﬁ'(gﬂr/l/)’)
i=1 j=0
(r+1) -poly (s,d)
= @ o (of where deg(g;) < d/4andc/ € F
i=1
poly(s,d) r d/4

m

2y L

Proof Idea of Main Theorems

Proof of Theorem 1: Conjecture C1 to PIT

Proof of Theorem 1: Conjecture C1 to PIT

 Assume C1 holds i.e. for fy := (x + 1)9, U=(fy, r,d%) > d/r%.

Proof of Theorem 1: Conjecture C1 to PIT

 Assume C1 holds i.e. for fy := (x + 1)9, U=(fy, r,d%) > d/r%.

* Idea: use Cl1 to prove that a fixed constant k-variate O(n)-degree hard

polynomial family (Px), exists i.e. size(Pk.n) = e,

Proof of Theorem 1: Conjecture C1 to PIT

 Assume C1 holds i.e. for fy := (x + 1)9, U=(fy, r,d%) > d/r%.

* Idea: use Cl1 to prove that a fixed constant k-variate O(n)-degree hard

polynomial family (Px), exists i.e. size(Pk.n) = e,

* Use fy to construct a k-variate O(n) degree polynomial Py , (d :=d(n)).

Proof of Theorem 1: Conjecture C1 to PIT

 Assume C1 holds i.e. for fy := (x + 1)9, U=(fy, r,d%) > d/r%.

* Idea: use Cl1 to prove that a fixed constant k-variate O(n)-degree hard

polynomial family (Px), exists i.e. size(Pk.n) = e,

* Use fy to construct a k-variate O(n) degree polynomial Py , (d :=d(n)).

* Use GKSS19: constant k-variate (k > 4) explicit hard polynomial
implies blackbox-PIT € P.

Conjecture C1 to constant k-variate hard polynomial

» Fix a large k .

Conjecture C1 to constant k-variate hard polynomial

* Fix alarge k (k > max (17(62+1),19r/61)).

Conjecture C1 to constant k-variate hard polynomial

* Fix a large k . For every n € N, choose the largest d := d(n) which is
<(n+1)k-1andde/,.

Conjecture C1 to constant k-variate hard polynomial

* Fix a large k . For every n € N, choose the largest d := d(n) which is
< (n+1)K—1andd € /,. Observe: d = Q((n+1)¥).

Conjecture C1 to constant k-variate hard polynomial

* Fix a large k . For every n € N, choose the largest d := d(n) which is
< (n+1)¥-1andd € /.. Observe: d = Q((n+1)¥).

* Apply inverse Kronecker substitution on fy to construct Pk p:

Conjecture C1 to constant k-variate hard polynomial

* Fix a large k . For every n € N, choose the largest d := d(n) which is
< (n+1)%-1andd € /. Observe: d = Q((n+1)¥).

* Apply inverse Kronecker substitution on fy to construct Pk p:

Pin(X1, ... Xk) ¥ Pip (X("H)O, . ,X("H)H) = fq(x),

Conjecture C1 to constant k-variate hard polynomial

* Fix a large k . For every n € N, choose the largest d := d(n) which is
< (n+1)%-1andd € /.. Observe: d = Q((n+1)¥).

* Apply inverse Kronecker substitution on fy to construct Py p:
0 k-1
Pkn(X1,. .., xk) = Pip (X('m))) = fq(x),

Py.n is a k-variate polynomial with individual degree at most n. Thus, it
is a bijection between supp (P) and supp(fy).

Conjecture C1 to constant k-variate hard polynomial

* Fix a large k . For every n € N, choose the largest d := d(n) which is
< (n+1)f-1andd € /.. Observe: d = Q((n+1)¥).

* Apply inverse Kronecker substitution on fy to construct Py ,:
0 k-1
Pra(X1, ..., Xk) = Py (X(n+1) en e, x Y) = fa(x),

Pk.n is a k-variate polynomial with individual degree at most n. Thus, it
is a bijection between supp (P) and supp(fy).

* Note that: deg(Px.n) < k-n=0(n).

Conjecture C1 to constant k-variate hard polynomial

* Fix a large k . For every n € N, choose the largest d := d(n) which is
< (n+1)K—=1andd € /,. Observe: d = Q((n+1)").

* Apply inverse Kronecker substitution on fy to construct Py p:
0 k-1
Prn(X1, ..., Xk) = P (X('m))) = fa(x),

Py.n is a k-variate polynomial with individual degree at most n. Thus, it
is a bijection between supp (P) and supp(fq).

Note that: deg(Pk,,) < k-n=0(n).

* Claim: size(Px) = (deg(Pk,n))Q“) = g2,

Conjecture C1 to constant k-variate hard polynomial

* Fix a large k . For every n € N, choose the largest d := d(n) which is
< (n+1)K—1andd € /,. Observe: d = Q((n+1)¥).

* Apply inverse Kronecker substitution on fy to construct Py ,:
0 k-1
Pi,n(X1, ..., Xk) = Py (X(n+1) e, x)) = fa(x),

Pk .n is a k-variate polynomial with individual degree at most n. Thus, it
is a bijection between supp (P) and supp(fy).

* Note that: deg(Px.n) < k-n=0(n).

e Claim: size(Py) = (deg(Pk,n))Qm = ¢ Proof by contradiction:
If Py p is not hard, then C1 doesn’t hold for infinitely many d € /.

Proof of hardness of Py ,

20

Proof of hardness of Py ,

* Suppose, size(Px) < gt/ (u, depending on r, 6+, 02, fixed later).

20

Proof of hardness of Py ,

* Suppose, size(Px) < gt/ (u, depending on r, 6+, 02, fixed later).

* We know, using the derived CNF, Py , can be written as

poly (a"/# kn)
_ ’o=r
Pin = Z G g
=1

where deg(g;) < kn/4.

20

Proof of hardness of Py ,

* Suppose, size(Px) < gt/ (u, depending on r, 6+, 02, fixed later).

* We know, using the derived CNF, Py , can be written as

poly (a"/# kn)
_ ’o=r
Pin = Z G g
=1

where deg(g;) < kn/4.

« Direct counting argument shows: | J; supp(gy)| < (k”;"/ 4.

20

Proof of hardness of Py ,

* Suppose, size(Px) < gt/ (u, depending on r, 6+, 02, fixed later).

* We know, using the derived CNF, Py , can be written as

poly (a"/# kn)
_ ’o=r
Pin = Z G g
=1

where deg(g;) < kn/4.

« Direct counting argument shows: | J; supp(gy)| < (k”;"/ 4.

* Let ¢ be the Kronecker map ¢ : x; +— xM™ fori e [k]. Then,

poly(d'/# kn)
fi = ¢(Pn) = D, @)

i=1

20

Proof of hardness of Py ,

* Suppose, size(Px) < gt/ (u, depending on r, 6+, 02, fixed later).

* We know, using the derived CNF, Py , can be written as

poly (a"/# kn)
_ ’o=r
Pin = Z G g
=1

where deg(g;) < kn/4.

« Direct counting argument shows: | J; supp(gy)| < (k”;"/ 4.

* Let ¢ be the Kronecker map ¢ : x; +— xM™ fori e [k]. Then,

poly(d'/# kn)
fi = ¢(Pn) = D, @)

i=1

* ¢ cannot increase the union-support or the top fan-in.

20

Finishing Theorem 1

* fy has sum of r-th power representation with top fan-in

So := poly(d"/#, kn) and support-union at most s := (¥*4"/4).

21

Finishing Theorem 1

* fy has sum of r-th power representation with top fan-in

So := poly(d"/#, kn) and support-union at most s := (¥*4"/4).

e This means, in notation: Ug(fy,r,Sg) < S1.

21

Finishing Theorem 1

* fy has sum of r-th power representation with top fan-in

So := poly(d"/#, kn) and support-union at most s := (¥*4"/4).

e This means, in notation: Ug(fy,r,Sg) < S1.

» Choose u appropriately so that s < d®' and sy < d/r®.

21

Finishing Theorem 1

* fy has sum of r-th power representation with top fan-in
So := poly(d"/#, kn) and support-union at most s := (¥*4"/4).

e This means, in notation: Ug(fy,r,Sg) < S1.
» Choose u appropriately so that s < d®' and sy < d/r®.

o This means, Ug(fy,r,d®") < d/r? for infinitely many d € /,, a
contradiction!

21

Finishing Theorem 1

* fy has sum of r-th power representation with top fan-in

So := poly(d"/#, kn) and support-union at most s := (¥*4"/4).

e This means, in notation: Ug(fy,r,Sg) < S1.
» Choose u appropriately so that s < d®' and sy < d/r®.

o This means, Ug(fy,r,d®") < d/r? for infinitely many d € /,, a
contradiction!

* Pxpishard = PIT € P (using GKSS19).

21

Finishing Theorem 1

* fy has sum of r-th power representation with top fan-in

So := poly(d"/#, kn) and support-union at most s := (¥*4"/4).

e This means, in notation: Ug(fy,r,Sg) < S1.
» Choose u appropriately so that s < d®' and sy < d/r®.

o This means, Ug(fy,r,d®") < d/r? for infinitely many d € /,, a
contradiction!

* Pxpishard = PIT € P (using GKSS19).

* Instead of 25-CNF, we could have used 5-CNF, then s := (k”z'/ 2)
which is > d. Thus, r > 25 is required!

21

Proof of Theorem 2: Conjecture C1 to VP # VNP

22

Proof of Theorem 2: Conjecture C1 to VP # VNP

* Fix a large constant n.

22

Proof of Theorem 2: Conjecture C1 to VP # VNP

* Fix a large constant n. For every k € N, choose the largest d := d(k)
whichis < (n+1)f —1andd € /..

22

Proof of Theorem 2: Conjecture C1 to VP # VNP

* Fix a large constant n. For every k € N, choose the largest d := d(k)
which is < (n+1)" =1 and d € /.. Thus, d = Q((n + 1)¥) = 22K,

22

Proof of Theorem 2: Conjecture C1 to VP # VNP

* Fix a large constant n. For every k € N, choose the largest d := d(k)
which is < (n+1)" =1 and d € /.. Thus, d = Q((n + 1)¥) = 22K,

* From fy construct Py _,, a k-variate, n-individual degree polynomial:

0 k-1
Pin(Xts -+ Xk) = Prp (x(””) bern x0T) = fy(x),

22

Proof of Theorem 2: Conjecture C1 to VP # VNP

* Fix a large constant n. For every k € N, choose the largest d := d(k)
which is < (n+1)" =1 and d € /.. Thus, d = Q((n + 1)¥) = 22K,

* From fy construct Py _,, a k-variate, n-individual degree polynomial:

0 k-1
Pin(Xts -+ Xk) = Prp (x(””) bern x0T) = fy(x),

* Note that: deg(Px.n) < k-n = O(K).

22

Proof of Theorem 2: Conjecture C1 to VP # VNP

* Fix a large constant n. For every k € N, choose the largest d := d(k)
which is < (n+1)" =1 and d € /.. Thus, d = Q((n + 1)¥) = 22K,

* From fy construct Py _,, a k-variate, n-individual degree polynomial:

0 k-1
Pin(Xts -+ Xk) = Prp (x(””) bern x0T) = fy(x),

* Note that: deg(Px.n) < k-n = O(K).

* We will show that Conjecture C1 implies
size(Py) = (1) = 2200 = p@(dee(Pen)) — (P, V4 ¢ VP.

22

Proof of Theorem 2: Conjecture C1 to VP # VNP

* Fix a large constant n. For every k € N, choose the largest d := d(k)
which is < (n+1)" =1 and d € /.. Thus, d = Q((n + 1)¥) = 22K,

* From fy construct Py _,, a k-variate, n-individual degree polynomial:

0 k-1
Pin(Xts -+ Xk) = Prp (x(””) bern x0T) = fy(x),

* Note that: deg(Px.n) < k-n = O(K).

* We will show that Conjecture C1 implies
size(Py) = (1) = 2200 = p@(dee(Pen)) — (P, V4 ¢ VP.

» Assume GRH and VP = VNP, we will show that {Px ,}x € VP.

22

Proof of Theorem 2: Conjecture C1 to VP # VNP

* Fix a large constant n. For every k € N, choose the largest d := d(k)
which is < (n+1)" =1 and d € /.. Thus, d = Q((n + 1)¥) = 22K,

* From fy construct Py _,, a k-variate, n-individual degree polynomial:

0 k-1
Pin(Xts -+ Xk) = Prp (x(””) bern x0T) = fy(x),

* Note that: deg(Px.n) < k-n = O(K).

* We will show that Conjecture C1 implies
size(Py) = (1) = 2200 = p@(dee(Pen)) — (P, V4 ¢ VP.

» Assume GRH and VP = VNP, we will show that {Px ,}x € VP.
* Thus, GRH and Conjecture CI = VP # VNP.

22

GRH and VP = VNP = {P,}x € VP

23

GRH and VP = VNP = {P,}x € VP

* One can write Px (X) as

Pen® = Y (‘e’)?

ee[0,c]k

23

GRH and VP = VNP = {P,}x € VP

* One can write Px (X) as

Pen® = Y (‘e’)?

ee[0,c]k

. (z) are computable in complexity class CH (Counting Hierarchy).

23

GRH and VP = VNP = {P,}x € VP

* One can write Px (X) as

Pen® = Y (‘e’)?

ee[0,c]k

. (z) are computable in complexity class CH (Counting Hierarchy).

* Biirgisser proved (in 2000) that if VP = VNP and GRH, then
CH = P/poly. This means, (g) are computable in P/poly.

23

GRH and VP = VNP = {P,}x € VP

* One can write Px (X) as

Pen® = Y (‘e’)?

ee[0,c]k

. (z) are computable in complexity class CH (Counting Hierarchy).

* Biirgisser proved (in 2000) that if VP = VNP and GRH, then
CH = P/poly. This means, (g) are computable in P/poly.

* Using Valiant’s Criterion, {Px »}x € VNP = VP.

23

From C1 to {Px,}x ¢ VP

24

From C1 to {Px,}x ¢ VP

* Assume size(Py) < d'/k; where w depends on r, 01, 02, fixed later.

24

From C1 to {Px,}x ¢ VP

* Assume size(Py) < d'/k; where w depends on r, 01, 02, fixed later.

* We know, using the derived CNF, Py , can be written as

poly (a"/# kn)
_ ’o=r
Pin = Z G g
=1

where deg(g;) < kn/4.

24

From C1 to {Px,}x ¢ VP

* Assume size(Py) < d'/k; where w depends on r, 01, 02, fixed later.

* We know, using the derived CNF, Py , can be written as

poly (a"/# kn)
_ ’o=r
Pin = Z G g
=1

where deg(g;) < kn/4.

« Direct counting argument shows: | J; supp(gy)| < (k”;"/ 4.

24

From C1 to {Px,}x ¢ VP

* Assume size(Py) < d'/k; where w depends on r, 01, 02, fixed later.

* We know, using the derived CNF, Py , can be written as

poly (a"/# kn)
_ ’o=r
Pin = Z G g
=1

where deg(g;) < kn/4.

« Direct counting argument shows: | J; supp(gy)| < (k”;"/ 4.

* Let ¢ be the Kronecker map ¢ : x; +— xM™ fori e [k]. Then,

poly(d'/# kn)
fi = ¢(Pn) = D, @)

i=1

24

From C1 to {Px,}x ¢ VP

* Assume size(Py) < d'/k; where w depends on r, 01, 02, fixed later.

* We know, using the derived CNF, Py , can be written as

poly (a"/# kn)
_ ’o=r
Pin = Z G g
=1

where deg(g;) < kn/4.

« Direct counting argument shows: | J; supp(gy)| < (k”;"/ 4.

* Let ¢ be the Kronecker map ¢ : x; +— xM™ fori e [k]. Then,

poly(d'/# kn)
fi = ¢(Pn) = D, @)

i=1

* ¢ cannot increase the union-support or the top fan-in.

24

Finishing Theorem 2

* fy has sum of r-th power representation with top fan-in

So := poly(d'/#, kn) and support-union at most s1 := (k”j(”/ 9.

25

Finishing Theorem 2

* fy has sum of r-th power representation with top fan-in

So := poly(d'/#, kn) and support-union at most s1 := (k”j(”/ 9.

e This means, in notation: Ug(fy,r,So) < sq.

25

Finishing Theorem 2

* fy has sum of r-th power representation with top fan-in

So := poly(d'/#, kn) and support-union at most s1 := (k”j(”/ 9.

e This means, in notation: Ug(fy,r,So) < sq.

« Choose u appropriately so that sy < d%' and sy < d/r.

25

Finishing Theorem 2

* fy has sum of r-th power representation with top fan-in

So := poly(d'/#, kn) and support-union at most s1 := (k”j(”/ 9.

e This means, in notation: Ug(fy,r,So) < sq.
« Choose u appropriately so that sy < d%' and sy < d/r.

e This means, Ug(fy,r,d%") < d/ré for infinitely many d € /,, a
contradiction!

25

Finishing Theorem 2

* fy has sum of r-th power representation with top fan-in

So := poly(d'/#, kn) and support-union at most s1 := (k”j(”/ 9.

e This means, in notation: Ug(fy,r,So) < sq.
« Choose u appropriately so that sy < d%' and sy < d/r.

e This means, Ug(fy,r,d%") < d/ré for infinitely many d € /,, a
contradiction!

* Py is exponentially hard i.e. size(Px) > d'/# = 22(" Thus, it
cannot be in VP.

25

Finishing Theorem 2

fy has sum of r-th power representation with top fan-in

So := poly(d'/#, kn) and support-union at most s1 := (k”j(”/ 9.

This means, in notation: Ug(fy,r,Sg) < S1.
Choose u appropriately so that so < d°' and s; < d/r%.

This means, Ug(fy,r,d%") < d/ré for infinitely many d € /,, a
contradiction!

Py is exponentially hard i.e. size(Px) > d'/# = 2% Thus, it
cannot be in VP.

Instead of 25-CNF, we could have used 5-CNF, then s; := (k”;”/ 2)
which is > d. Thus, r > 25 is required!

25

Conclusion

Conclusion

26

Conclusion

* We showed that for r = 2, Conjecture C1 implies matrix rigidity.

26

Conclusion

* We showed that for r = 2, Conjecture C1 implies matrix rigidity. Could
we solve the conjecture for special cases like constant some of powers?

26

Conclusion

* We showed that for r = 2, Conjecture C1 implies matrix rigidity. Could
we solve the conjecture for special cases like constant some of powers?

* Is C1 true for random f over Q?

26

Conclusion

* We showed that for r = 2, Conjecture C1 implies matrix rigidity. Could
we solve the conjecture for special cases like constant some of powers?

 Is C1 true for random f over Q? over C?

26

Conclusion

* We showed that for r = 2, Conjecture C1 implies matrix rigidity. Could
we solve the conjecture for special cases like constant some of powers?

 Is C1 true for random f over Q? over C?

* Can we improve the exponent 257

26

Conclusion

* We showed that for r = 2, Conjecture C1 implies matrix rigidity. Could
we solve the conjecture for special cases like constant some of powers?

 Is C1 true for random f over Q? over C?

* Can we improve the exponent 25? Very recently, Dutta and Saxena
improved 25 to 4.

26

Conclusion

* We showed that for r = 2, Conjecture C1 implies matrix rigidity. Could
we solve the conjecture for special cases like constant some of powers?

 Is C1 true for random f over Q? over C?

* Can we improve the exponent 25? Very recently, Dutta and Saxena
improved 25 to 4. Can we improve further to 3 (or 2)?

26

Conclusion

* We showed that for r = 2, Conjecture C1 implies matrix rigidity. Could
we solve the conjecture for special cases like constant some of powers?

 Is C1 true for random f over Q? over C?

* Can we improve the exponent 25? Very recently, Dutta and Saxena
improved 25 to 4. Can we improve further to 3 (or 2)?

+ Can we remove GRH for (x + 1)9?

26

Conclusion

* We showed that for r = 2, Conjecture C1 implies matrix rigidity. Could
we solve the conjecture for special cases like constant some of powers?

 Is C1 true for random f over Q? over C?

* Can we improve the exponent 25? Very recently, Dutta and Saxena
improved 25 to 4. Can we improve further to 3 (or 2)?

+ Can we remove GRH for (x + 1)9?

* Be ambitious. Prove Conjecture C1!

26

Conclusion

* We showed that for r = 2, Conjecture C1 implies matrix rigidity. Could
we solve the conjecture for special cases like constant some of powers?

 Is C1 true for random f over Q? over C?

* Can we improve the exponent 25? Very recently, Dutta and Saxena
improved 25 to 4. Can we improve further to 3 (or 2)?

+ Can we remove GRH for (x + 1)9?

* Be ambitious. Prove Conjecture C1!

#StaySafe <

26

	Introduction
	Conjecture C1 and Algebraic Complexity
	Circuit Normal Form (CNF) and Algebraic Complexity
	Proof Idea of Main Theorems
	Conclusion

