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For a univariate polynomial f(x) € F[x] over a field F, and a positive integer
r, we say that f is computed as a sum of r'-powers, if

S
f=> 6, (1)
i=1

for some s > 1, ¢; € Fand £;(x) € F[x].

* The sum of r-powers is a complete model (for large enough F).
Because, for any distinct A;, there are ¢; € F such that

) = ) e (F) + )"
i=0

* For a fixed f, r, s representation Eqn. (1) might not exist.
Eg. (x+1)™*" = ¢; - €} + ¢ - £} is not possible!
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* A natural complexity measure in (1) is the support-union size, namely
the number of distinct monomials in the representation, ‘ U, supp(f,-)|
where support supp(€) denotes the set of nonzero monomials in the
polynomial €.

Eg. (s = 1) Let (x +1)4 = ¢/ wherer | d. So, ¢ = (x +1)%/". Thus,
supp(4y) = {x°,...,x%"} = |supp(¢1)| =d/r+1.

* The support-union size of f with respect to r and s, denoted Ug(f, r, s) is
defined as the minimum support-union size when f is written in the
form (1), and oo, if no such representation exists.

* Observe: |supp(¢)| < |supp(¢)|” for r > 1. Thus, for all f,r, s:

Ur(f,r,s) > Q(|supp(f)|'/")
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Fix the notations: fy(x) := (x +1)? and F = Q.

Question: What can we say about Ug(fy, r, -)? Here are few observations:

e Fors=1,ifr | d,thenwehave’U;(fd,rJ) =d/r+1 ‘

e For s = 2, we show that’ Up(fy,r,2) > d/r+1 ‘

e (Small s). For s =r + 1 and any d, we show that

’U]F(fd,l',r+1) < d/r+r ‘

e (Large s). Fors > ¢ - (d + 1) for any ¢ > r, we show that

|Uslia.r,s) < O(d')")

Thus, for large s, we get Ug(fy,r,s) = O d'/"), which resolves this case.
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Support-union Conjecture

For technical reasons, we will restrict d to the domain
I ={r"=1|meN}.

Motivated from the examples above, we conjecture the following.

Support-union Conjecture (C1)
For positive constants 61 < 1,o > 1 and a constant prime-power r,

Us(fg,r,d®) > d/r
for all large enough d € /..
There are other intricate polynomial families for which we suspect that C1 is
true; for e.g. [Tjea1(x =1, 2o 2 x.

Reason to choose fy is that it is a very simple polynomial.
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Polynomial Identity Testing

* Polynomial Identity Testing (PIT): Given a circuit C, test whether C
computes the zero polynomial (deterministically).

* Blackbox-PIT asks for an algorithm to test the zeroness of a given
algebraic circuit via mere query access.

» Hitting sets: Find a set of points H such that any “small” circuit C that is
computing a nonzero polynomial must satisfy C(a) # 0 for some a € H.

Polynomial Identity Lemma (Ore, Demillo-Lipton, Schwartz, Zippel)
If P(x) is a nonzero polynomial of degree d, and S C F of size at least

d +1, then P(a) # 0 for some a € S".

This above lemma puts PIT € RP.
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Theorem 1: Conjecture C1 to PIT
If Conjecture C1 holds for an r > 25, then blackbox-PIT € P.

Theorem 2: Conjecture C1 to VP # VNP
Assume GRH, and Conjecture C1 holds for an r > 25, then VP # VNP.

Theorem 2 is reminiscent to the following:

Strong lower bound on sum-of-squares in non-commutative settings

implies Permanent is hard [HWY11].
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* C2 and GRH implies VP # VINP; it’s not clear whether it implies PIT € P.
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An Important CNF

e It was established in [VSBRS83, Sap19] that an n-variate, degree d
polynomial f(x), computed by a circuit of size s, can be decomposed as

»
f(X) = D fufia-fig - fa - fis
i=1

where
1. top-fanin s’ = poly(s, d),
2. where each fj has circuit size at most poly(s, d)

3. deg(fy) < d/2, foralli,j.

e This circuit normal-form (CNF) has played a key role in all recent
depth-reduction results [AV08, Koil2, GKKS13, Tav15].
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Given d-degree f(x), computed by size-s circuit, we decompose f as
poly(s,d)
f(x) = Z fi1 - fio - iz - fig - fis
i=1

size(f;) = poly(s, d) and deg(fj) < d/2. Apply CNF to each of f; to get:

poly(s,d)

f(x) =

Note that deg(g;) < d/4.
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[F be a field of characteristic 0 or > m. One can write g = [[;c[m) gi as:
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Sum-Identity Lemma (DST20)
Let FF be a field of characteristic 0 or large. Let h(x) € F[x] and0 <m < r.

There exist ¢y, ; € F and distinct A; € F, for 0 < i < r, such that
r
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Proof Sketch.
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We have already established that n-variate, d-degree f(x) computed by size-s
circuit can be written as poly(s, d)-many sum of 25"-powers of degree at
most d/4. Using the Sum-Identity lemma, for r > 25, we get:
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 Assume C1 holds i.e. for fy := (x + 1)9, U=(fy, r,d%) > d/r%.

* Idea: use Cl1 to prove that a fixed constant k-variate O(n)-degree hard

polynomial family (Px ), exists i.e. size(Pk.n) = e,

* Use fy to construct a k-variate O(n) degree polynomial Py , (d :=d(n)).

* Use GKSS19: constant k-variate (k > 4) explicit hard polynomial
implies blackbox-PIT € P.
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Conjecture C1 to constant k-variate hard polynomial

* Fix a large k . For every n € N, choose the largest d := d(n) which is
< (n+1)K—1andd € /,. Observe: d = Q((n+1)¥).

* Apply inverse Kronecker substitution on fy to construct Py ,:
0 k-1
Pi,n(X1, ..., Xk) = Py (X(n+1) e, x ) ) = fa(x),

Pk .n is a k-variate polynomial with individual degree at most n. Thus, it
is a bijection between supp (P ) and supp(fy).

* Note that: deg(Px.n) < k-n=0(n).

e Claim: size(Py ) = (deg(Pk,n))Qm = ¢ Proof by contradiction:
If Py p is not hard, then C1 doesn’t hold for infinitely many d € /.
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* Suppose, size(Px ) < gt/ (u, depending on r, 6+, 02, fixed later).

* We know, using the derived CNF, Py , can be written as

poly (a"/# kn)
_ ’o=r
Pin = Z G g
=1

where deg(g;) < kn/4.

« Direct counting argument shows: | J; supp(gy)| < (k”;"/ 4.

* Let ¢ be the Kronecker map ¢ : x; +— xM™ fori e [k]. Then,

poly(d'/# kn)
fi = ¢(Pn) = D, @)

i=1

* ¢ cannot increase the union-support or the top fan-in.
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* fy has sum of r-th power representation with top fan-in

So := poly(d"/#, kn) and support-union at most s := (¥*4"/4).

e This means, in notation: Ug(fy,r,Sg) < S1.
» Choose u appropriately so that s < d®' and sy < d/r®.

o This means, Ug(fy,r,d®") < d/r? for infinitely many d € /,, a
contradiction!

* Pxpishard = PIT € P (using GKSS19).

* Instead of 25-CNF, we could have used 5-CNF, then s := (k”z'/ 2)
which is > d. Thus, r > 25 is required!
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0 k-1
Pin(Xts -+ Xk) = Prp (x(””) bern x0T ) = fy(x),

* Note that: deg(Px.n) < k-n = O(K).

* We will show that Conjecture C1 implies
size(Py ) = (1) = 2200 = p@(dee(Pen)) — (P, V4 ¢ VP.

» Assume GRH and VP = VNP, we will show that {Px ,}x € VP.
* Thus, GRH and Conjecture CI = VP # VNP.
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Pen® = Y (‘e’)?

ee[0,c]k

. (z) are computable in complexity class CH (Counting Hierarchy).

* Biirgisser proved (in 2000) that if VP = VNP and GRH, then
CH = P/poly. This means, (g) are computable in P/poly.

* Using Valiant’s Criterion, {Px »}x € VNP = VP.
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=1

where deg(g;) < kn/4.

« Direct counting argument shows: | J; supp(gy)| < (k”;"/ 4.

* Let ¢ be the Kronecker map ¢ : x; +— xM™ fori e [k]. Then,

poly(d'/# kn)
fi = ¢(Pn) = D, @)

i=1

* ¢ cannot increase the union-support or the top fan-in.
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fy has sum of r-th power representation with top fan-in

So := poly(d'/#, kn) and support-union at most s1 := (k”j(”/ 9.

This means, in notation: Ug(fy,r,Sg) < S1.
Choose u appropriately so that so < d°' and s; < d/r%.

This means, Ug(fy,r,d%") < d/ré for infinitely many d € /,, a
contradiction!

Py is exponentially hard i.e. size(Px ) > d'/# = 2% Thus, it
cannot be in VP.

Instead of 25-CNF, we could have used 5-CNF, then s; := (k”;”/ 2)
which is > d. Thus, r > 25 is required!
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