Lower bounds on the sum of 25th-powers of univariates lead to complete derandomization of PIT

Pranjal Dutta (CMI & IIT Kanpur)

Nitin Saxena (IIT Kanpur)

Thomas Thierauf (Aalen University)

SIGTACS Webinar @CSE, IITK

- 1. Introduction
- 2. Conjecture C1 and Algebraic Complexity
- 3. Circuit Normal Form (CNF) and Algebraic Complexity
- 4. Proof Idea of Main Theorems
- 5. Conclusion

Introduction

For a *univariate* polynomial $f(x) \in \mathbb{F}[x]$ over a field \mathbb{F} , and a positive integer *r*, we say that *f* is computed as a *sum of rth-powers*, if

For a *univariate* polynomial $f(x) \in \mathbb{F}[x]$ over a field \mathbb{F} , and a positive integer *r*, we say that *f* is computed as a *sum of rth-powers*, if

$$f = \sum_{i=1}^{s} c_i \cdot \ell_i^r , \qquad (1)$$

for some $s \ge 1$, $c_i \in \mathbb{F}$ and $\ell_i(x) \in \mathbb{F}[x]$.

For a *univariate* polynomial $f(x) \in \mathbb{F}[x]$ over a field \mathbb{F} , and a positive integer *r*, we say that *f* is computed as a *sum of rth-powers*, if

$$f = \sum_{i=1}^{s} c_i \cdot \ell_i^r , \qquad (1)$$

for some $s \ge 1$, $c_i \in \mathbb{F}$ and $\ell_i(x) \in \mathbb{F}[x]$.

• The *sum of rth-powers* is a complete model (for large enough \mathbb{F}).

For a *univariate* polynomial $f(x) \in \mathbb{F}[x]$ over a field \mathbb{F} , and a positive integer *r*, we say that *f* is computed as a *sum of rth-powers*, if

$$f = \sum_{i=1}^{s} c_i \cdot \ell_i^r , \qquad (1)$$

for some $s \ge 1$, $c_i \in \mathbb{F}$ and $\ell_i(x) \in \mathbb{F}[x]$.

The sum of rth-powers is a complete model (for large enough F).
Because, for any distinct λ_i, there are c_i ∈ F such that

$$f(x) = \sum_{i=0}^{r} c_i \cdot (f(x) + \lambda_i)^{i}$$

For a *univariate* polynomial $f(x) \in \mathbb{F}[x]$ over a field \mathbb{F} , and a positive integer *r*, we say that *f* is computed as a *sum of rth-powers*, if

$$f = \sum_{i=1}^{s} c_i \cdot \ell_i^r , \qquad (1)$$

for some $s \ge 1$, $c_i \in \mathbb{F}$ and $\ell_i(x) \in \mathbb{F}[x]$.

The sum of rth-powers is a complete model (for large enough F).
Because, for any *distinct* λ_i, there are c_i ∈ F such that

$$f(x) = \sum_{i=0}^{r} c_i \cdot (f(x) + \lambda_i)^r$$

• For a fixed f, r, s representation Eqn. (1) might not exist.

For a *univariate* polynomial $f(x) \in \mathbb{F}[x]$ over a field \mathbb{F} , and a positive integer *r*, we say that *f* is computed as a *sum of rth-powers*, if

$$f = \sum_{i=1}^{s} c_i \cdot \ell_i^r , \qquad (1)$$

for some $s \ge 1$, $c_i \in \mathbb{F}$ and $\ell_i(x) \in \mathbb{F}[x]$.

The sum of rth-powers is a complete model (for large enough F).
Because, for any distinct λ_i, there are c_i ∈ F such that

$$f(x) = \sum_{i=0}^{r} c_i \cdot (f(x) + \lambda_i)^r$$

• For a fixed f, r, s representation Eqn. (1) might not exist. Eg. $(x + 1)^{r+1} = c_1 \cdot \ell_1^r + c_2 \cdot \ell_2^r$ is not possible!

• A natural complexity measure in (1) is the *support-union size*, namely the number of distinct monomials in the representation, $\left|\bigcup_{i=1}^{s} \operatorname{supp}(\ell_{i})\right|$ where *support* $\operatorname{supp}(\ell)$ denotes the set of nonzero monomials in the polynomial ℓ .

 A natural complexity measure in (1) is the *support-union size*, namely the number of distinct monomials in the representation, |∪^s_{i=1} supp(l_i)| where *support* supp(l) denotes the set of nonzero monomials in the polynomial l.

Eg. (s = 1) Let $(x + 1)^d = \ell_1^r$ where $r \mid d$. So, $\ell_1 = (x + 1)^{d/r}$. Thus, supp $(\ell_1) = \{x^0, \dots, x^{d/r}\} \implies |\text{supp}(\ell_1)| = d/r + 1$.

• A natural complexity measure in (1) is the *support-union size*, namely the number of distinct monomials in the representation, $\left|\bigcup_{i=1}^{s} \operatorname{supp}(\ell_{i})\right|$ where *support* supp (ℓ) denotes the set of nonzero monomials in the polynomial ℓ .

Eg. (s = 1) Let $(x + 1)^d = \ell_1^r$ where $r \mid d$. So, $\ell_1 = (x + 1)^{d/r}$. Thus, supp $(\ell_1) = \{x^0, \dots, x^{d/r}\} \implies |\text{supp}(\ell_1)| = d/r + 1$.

• The *support-union size of f* with respect to *r* and *s*, denoted $U_{\mathbb{F}}(f, r, s)$ is defined as the minimum support-union size when *f* is written in the form (1), and ∞ , if no such representation exists.

• A natural complexity measure in (1) is the *support-union size*, namely the number of distinct monomials in the representation, $\left|\bigcup_{i=1}^{s} \operatorname{supp}(\ell_{i})\right|$ where *support* supp (ℓ) denotes the set of nonzero monomials in the polynomial ℓ .

Eg. (s = 1) Let $(x + 1)^d = \ell_1^r$ where $r \mid d$. So, $\ell_1 = (x + 1)^{d/r}$. Thus, supp $(\ell_1) = \{x^0, \dots, x^{d/r}\} \implies |\text{supp}(\ell_1)| = d/r + 1$.

- The *support-union size of f* with respect to *r* and *s*, denoted $U_{\mathbb{F}}(f, r, s)$ is defined as the minimum support-union size when *f* is written in the form (1), and ∞ , if no such representation exists.
- **Observe:** $|\operatorname{supp}(\ell^r)| \le |\operatorname{supp}(\ell)|^r$ for $r \ge 1$.

• A natural complexity measure in (1) is the *support-union size*, namely the number of distinct monomials in the representation, $\left|\bigcup_{i=1}^{s} \operatorname{supp}(\ell_{i})\right|$ where *support* supp (ℓ) denotes the set of nonzero monomials in the polynomial ℓ .

Eg. (s = 1) Let $(x + 1)^d = \ell_1^r$ where $r \mid d$. So, $\ell_1 = (x + 1)^{d/r}$. Thus, supp $(\ell_1) = \{x^0, \dots, x^{d/r}\} \implies |\text{supp}(\ell_1)| = d/r + 1$.

- The *support-union size of f* with respect to *r* and *s*, denoted $U_{\mathbb{F}}(f, r, s)$ is defined as the minimum support-union size when *f* is written in the form (1), and ∞ , if no such representation exists.
- **Observe:** $|\operatorname{supp}(\ell^r)| \le |\operatorname{supp}(\ell)|^r$ for $r \ge 1$. Thus, for all f, r, s:

 $U_{\mathbb{F}}(f,r,s) \geq \Omega(|\mathrm{supp}(f)|^{1/r})$

Fix the notations: $f_d(x) := (x+1)^d$ and $\mathbb{F} = \mathbb{Q}$.

Fix the notations: $f_d(x) := (x + 1)^d$ and $\mathbb{F} = \mathbb{Q}$.

Question: What can we say about $U_{\mathbb{F}}(f_d, r, \cdot)$?

Fix the notations: $f_d(x) := (x + 1)^d$ and $\mathbb{F} = \mathbb{Q}$.

Question: What can we say about $U_{\mathbb{F}}(f_d, r, \cdot)$? Here are few observations:

• For s = 1, if $r \mid d$, then we have $U_{\mathbb{F}}(f_d, r, 1) = d/r + 1$.

Fix the notations: $f_d(x) := (x + 1)^d$ and $\mathbb{F} = \mathbb{Q}$.

Question: What can we say about $U_{\mathbb{F}}(f_d, r, \cdot)$? Here are few observations:

- For s = 1, if $r \mid d$, then we have $U_{\mathbb{F}}(f_d, r, 1) = d/r + 1$.
- For s = 2, we show that $U_{\mathbb{F}}(f_d, r, 2) \ge d/r + 1$.

Fix the notations: $f_d(x) := (x + 1)^d$ and $\mathbb{F} = \mathbb{Q}$.

Question: What can we say about $U_{\mathbb{F}}(f_d, r, \cdot)$? Here are few observations:

- For s = 1, if $r \mid d$, then we have $U_{\mathbb{F}}(f_d, r, 1) = d/r + 1$.
- For s = 2, we show that $U_{\mathbb{F}}(f_d, r, 2) \ge d/r + 1$.
- (Small *s*). For s = r + 1 and *any d*, we show that

$$U_{\mathbb{F}}(f_d,r,r+1) \leq d/r+r$$

Fix the notations: $f_d(x) := (x + 1)^d$ and $\mathbb{F} = \mathbb{Q}$.

Question: What can we say about $U_{\mathbb{F}}(f_d, r, \cdot)$? Here are few observations:

- For s = 1, if $r \mid d$, then we have $U_{\mathbb{F}}(f_d, r, 1) = d/r + 1$.
- For s = 2, we show that $U_{\mathbb{F}}(f_d, r, 2) \ge d/r + 1$.
- (Small *s*). For s = r + 1 and *any d*, we show that

$$U_{\mathbb{F}}(f_d, r, r+1) \leq d/r + r$$

• (Large *s*). For $s \ge c \cdot (d + 1)$ for any c > r, we show that

$$U_{\mathbb{F}}(f_d, r, s) \leq O(d^{1/r})$$
.

Fix the notations: $f_d(x) := (x + 1)^d$ and $\mathbb{F} = \mathbb{Q}$.

Question: What can we say about $U_{\mathbb{F}}(f_d, r, \cdot)$? Here are few observations:

- For s = 1, if $r \mid d$, then we have $U_{\mathbb{F}}(f_d, r, 1) = d/r + 1$.
- For s = 2, we show that $U_{\mathbb{F}}(f_d, r, 2) \ge d/r + 1$.
- (Small *s*). For s = r + 1 and *any d*, we show that

$$U_{\mathbb{F}}(f_d, r, r+1) \leq d/r + r$$

• (Large *s*). For $s \ge c \cdot (d + 1)$ for any c > r, we show that

$$U_{\mathbb{F}}(f_d, r, s) \leq O(d^{1/r})$$
.

Thus, for large *s*, we get $U_{\mathbb{F}}(f_d, r, s) = \Theta(d^{1/r})$, which resolves this case.

Support-union Conjecture

$$I_r := \{ r^m - 1 \mid m \in \mathbb{N} \}.$$

$$I_r := \{ r^m - 1 \mid m \in \mathbb{N} \}.$$

Motivated from the examples above, we *could* conjecture the following.

$$I_r := \{ r^m - 1 \mid m \in \mathbb{N} \}.$$

Motivated from the examples above, we *could* conjecture the following.

Possible Conjecture 1

For $s \le d$ and a constant prime-power r,

 $U_{\mathbb{F}}(f_d, r, s) \geq d/r$

for all large enough $d \in I_r$.

$$I_r := \{ r^m - 1 \mid m \in \mathbb{N} \}.$$

Motivated from the examples above, we *could* conjecture the following.

Possible Conjecture 2

For positive constant $\delta_1 \leq 1$ and a constant prime-power *r*,

 $U_{\mathbb{F}}(f_d, r, d^{\delta_1}) \geq d/r$

for all large enough $d \in I_r$.

$$I_r := \{ r^m - 1 \mid m \in \mathbb{N} \}.$$

Motivated from the examples above, we **conjecture** the following.

Support-union Conjecture (C1)

For positive constants $\delta_1 \leq 1, \delta_2 \geq 1$ and a constant prime-power *r*,

 $U_{\mathbb{F}}(f_d, r, d^{\delta_1}) \geq d/r^{\delta_2}$

for all large enough $d \in I_r$.

```
I_r := \{ r^m - 1 \mid m \in \mathbb{N} \}.
```

Motivated from the examples above, we **conjecture** the following.

Support-union Conjecture (C1) For positive constants $\delta_1 \le 1, \delta_2 \ge 1$ and a constant prime-power r, $U_{\mathbb{F}}(f_d, r, d^{\delta_1}) \ge d/r^{\delta_2}$

for all large enough $d \in I_r$.

There are other intricate polynomial families for which we suspect that C1 is true; for e.g. $\prod_{i \in [d]} (x - i)$, $\sum_{i=0}^{d} 2^{i^2} x^i$.

 $I_r := \{ r^m - 1 \mid m \in \mathbb{N} \}.$

Motivated from the examples above, we **conjecture** the following.

Support-union Conjecture (C1)

For positive constants $\delta_1 \leq 1, \delta_2 \geq 1$ and a constant prime-power *r*,

 $U_{\mathbb{F}}(f_d, r, d^{\delta_1}) \geq d/r^{\delta_2}$

for all large enough $d \in I_r$.

There are other intricate polynomial families for which we suspect that C1 is true; for e.g. $\prod_{i \in [d]} (x - i)$, $\sum_{i=0}^{d} 2^{i^2} x^i$.

Reason to choose f_d is that it is a very simple polynomial.

C1 over $\mathbb Z$

Conjecture C1 holds true over \mathbb{Z} .

C1 over $\mathbb Z$

Conjecture C1 holds true over \mathbb{Z} .

Proof.

If $r = p^{\ell}$ for some prime p and $\ell \in \mathbb{N}$, then for $d \in I_r$:

 $\binom{d}{i} \equiv \pm 1 \mod p \implies |\operatorname{supp}(f_d \mod p)| = d + 1.$

C1 over $\mathbb Z$

Conjecture C1 holds true over \mathbb{Z} .

Proof.

If $r = p^{\ell}$ for some prime p and $\ell \in \mathbb{N}$, then for $d \in I_r$:

$$\binom{d}{i} \equiv \pm 1 \mod p \implies |\operatorname{supp}(f_d \mod p)| = d + 1.$$

Observe: $\ell_i(x)^r \equiv \ell_i(x^r) \mod p$ and $\left| \bigcup_i \operatorname{supp}(\ell_i(x)) \right| = \left| \bigcup_i \operatorname{supp}(\ell_i(x^r)) \right|$.

C1 over \mathbb{Z}

Conjecture C1 holds true over \mathbb{Z} .

Proof.

If $r = p^{\ell}$ for some prime p and $\ell \in \mathbb{N}$, then for $d \in I_r$:

$$\binom{d}{i} \equiv \pm 1 \mod p \implies |\operatorname{supp}(f_d \mod p)| = d + 1.$$

Observe: $\ell_i(x)^r \equiv \ell_i(x^r) \mod p$ and $|\bigcup_i \operatorname{supp}(\ell_i(x))| = |\bigcup_i \operatorname{supp}(\ell_i(x^r))|$. $f_d = \sum c_i \cdot \ell_i^r$

C1 over $\mathbb Z$

Conjecture C1 holds true over \mathbb{Z} .

Proof.

If $r = p^{\ell}$ for some prime p and $\ell \in \mathbb{N}$, then for $d \in I_r$:

$$\binom{d}{i} \equiv \pm 1 \mod p \implies |\operatorname{supp}(f_d \mod p)| = d + 1.$$

Observe: $\ell_i(x)^r \equiv \ell_i(x^r) \mod p$ and $\left| \bigcup_i \operatorname{supp}(\ell_i(x)) \right| = \left| \bigcup_i \operatorname{supp}(\ell_i(x^r)) \right|$.

$$f_d = \sum c_i \cdot \ell_i^r \implies f_d \mod p = \sum c_i \cdot \ell_i(x^r) \mod p$$

C1 over $\mathbb Z$

Conjecture C1 holds true over \mathbb{Z} .

Proof.

If $r = p^{\ell}$ for some prime p and $\ell \in \mathbb{N}$, then for $d \in I_r$:

$$\binom{d}{i} \equiv \pm 1 \mod p \implies |\operatorname{supp}(f_d \mod p)| = d + 1.$$

Observe: $\ell_i(x)^r \equiv \ell_i(x^r) \mod p$ and $\left| \bigcup_i \operatorname{supp}(\ell_i(x)) \right| = \left| \bigcup_i \operatorname{supp}(\ell_i(x^r)) \right|$.

$$f_d = \sum c_i \cdot \ell_i^r \implies f_d \mod p = \sum c_i \cdot \ell_i(x^r) \mod p$$
$$\implies \left| \bigcup \operatorname{supp}(\ell_i) \right| \ge d + 1$$

C1 over $\mathbb Z$

Conjecture C1 holds true over \mathbb{Z} .

Proof.

If $r = p^{\ell}$ for some prime p and $\ell \in \mathbb{N}$, then for $d \in I_r$:

$$\binom{d}{i} \equiv \pm 1 \mod p \implies |\operatorname{supp}(f_d \mod p)| = d + 1.$$

Observe: $\ell_i(x)^r \equiv \ell_i(x^r) \mod p$ and $|\bigcup_i \operatorname{supp}(\ell_i(x))| = |\bigcup_i \operatorname{supp}(\ell_i(x^r))|$.

$$f_d = \sum c_i \cdot \ell_i^r \implies f_d \mod p = \sum c_i \cdot \ell_i(x^r) \mod p$$
$$\implies \left| \bigcup \operatorname{supp}(\ell_i) \right| \ge d + 1$$
$$\implies U_{\mathbb{Z}}(f_d, r, \cdot) \ge d + 1 > d/r^{\delta_2}$$

Conjecture C1 and Algebraic Complexity

Size = number of nodes + edges

• Valiant's Hypothesis: Prove that symbolic perm_n requires $n^{\omega(1)}$ -size circuit.

• Valiant's Hypothesis: Prove that symbolic perm_n requires $n^{\omega(1)}$ -size circuit. An *equivalent* version is: Prove $\forall P \neq \forall NP$.

- Valiant's Hypothesis: Prove that symbolic perm_n requires $n^{\omega(1)}$ -size circuit. An *equivalent* version is: Prove $\forall P \neq \forall NP$.
- VP : A family {*f_n*}_{*n*} ∈ VP (over 𝔽) if *f_n* is a poly(*n*)-variate polynomial, of degree poly(*n*) over 𝔽, computed by poly(*n*)-size circuit.

- Valiant's Hypothesis: Prove that symbolic perm_n requires $n^{\omega(1)}$ -size circuit. An *equivalent* version is: Prove $\forall P \neq \forall NP$.
- VP : A family {*f_n*}_{*n*} ∈ VP (over 𝔽) if *f_n* is a poly(*n*)-variate polynomial, of degree poly(*n*) over 𝔽, computed by poly(*n*)-size circuit.
- VNP : A family $\{f_n\}_n \in \text{VNP}$ (over \mathbb{F}) if $\exists \{g_n\}_n \in \text{VP} \& t(n) = \text{poly}(n)$:

$$f_n(\overline{x}) = \sum_{w \in \{0,1\}^{t(n)}} g_n(\overline{x}, w) \, .$$

- Valiant's Hypothesis: Prove that symbolic perm_n requires $n^{\omega(1)}$ -size circuit. An *equivalent* version is: Prove $\forall P \neq \forall NP$.
- VP : A family {*f_n*}_{*n*} ∈ VP (over 𝔽) if *f_n* is a poly(*n*)-variate polynomial, of degree poly(*n*) over 𝔽, computed by poly(*n*)-size circuit.
- VNP : A family $\{f_n\}_n \in \text{VNP}$ (over \mathbb{F}) if $\exists \{g_n\}_n \in \text{VP} \& t(n) = \text{poly}(n)$:

$$f_n(\overline{x}) = \sum_{w \in \{0,1\}^{t(n)}} g_n(\overline{x}, w)$$

• $\{f_n\}_n \in \mathsf{VNP} \implies f_n \text{ is explicit.}$

- Valiant's Hypothesis: Prove that symbolic perm_n requires $n^{\omega(1)}$ -size circuit. An *equivalent* version is: Prove $\forall P \neq \forall NP$.
- VP : A family {*f_n*}_{*n*} ∈ VP (over 𝔽) if *f_n* is a poly(*n*)-variate polynomial, of degree poly(*n*) over 𝔽, computed by poly(*n*)-size circuit.
- VNP : A family $\{f_n\}_n \in \text{VNP}$ (over \mathbb{F}) if $\exists \{g_n\}_n \in \text{VP} \& t(n) = \text{poly}(n)$:

$$f_n(\overline{x}) = \sum_{w \in \{0,1\}^{t(n)}} g_n(\overline{x}, w) \, .$$

- $\{f_n\}_n \in \mathsf{VNP} \implies f_n \text{ is explicit.}$
- Sufficient explicitness (Valiant's Criterion):

VP vs. VNP

- Valiant's Hypothesis: Prove that symbolic perm_n requires $n^{\omega(1)}$ -size circuit. An *equivalent* version is: Prove $\forall P \neq \forall NP$.
- VP : A family {*f_n*}_{*n*} ∈ VP (over 𝔽) if *f_n* is a poly(*n*)-variate polynomial, of degree poly(*n*) over 𝔽, computed by poly(*n*)-size circuit.
- VNP : A family $\{f_n\}_n \in \text{VNP}$ (over \mathbb{F}) if $\exists \{g_n\}_n \in \text{VP} \& t(n) = \text{poly}(n)$:

$$\left|f_n(\overline{x}) = \sum_{w \in \{0,1\}^{t(n)}} g_n(\overline{x}, w)\right|.$$

- $\{f_n\}_n \in \mathsf{VNP} \implies f_n \text{ is explicit.}$
- Sufficient explicitness (Valiant's Criterion): Suppose φ : {0, 1}* → N is a function in the class P. Then, the family {f_n}_n ∈ VNP if

$$f_n(\overline{x}) = \sum_{\boldsymbol{e} \in \{0,1\}^n} \phi(\boldsymbol{e}) \, \overline{x}^{\boldsymbol{e}} \, .$$

VP vs. VNP

- Valiant's Hypothesis: Prove that symbolic perm_n requires $n^{\omega(1)}$ -size circuit. An *equivalent* version is: Prove $\forall P \neq \forall NP$.
- VP : A family {*f_n*}_{*n*} ∈ VP (over 𝔽) if *f_n* is a poly(*n*)-variate polynomial, of degree poly(*n*) over 𝔽, computed by poly(*n*)-size circuit.
- VNP : A family $\{f_n\}_n \in \text{VNP}$ (over \mathbb{F}) if $\exists \{g_n\}_n \in \text{VP} \& t(n) = \text{poly}(n)$:

$$\left|f_n(\overline{x}) = \sum_{w \in \{0,1\}^{t(n)}} g_n(\overline{x}, w)\right|.$$

- $\{f_n\}_n \in \mathsf{VNP} \implies f_n \text{ is explicit.}$
- Sufficient explicitness (Valiant's Criterion): Suppose *φ* : {0, 1}* → N is a function in the class P/poly. Then, the family {*f_n*}_{*n*} ∈ VNP if

$$f_n(\overline{x}) = \sum_{\boldsymbol{e} \in \{0,1\}^n} \phi(\boldsymbol{e}) \, \overline{x}^{\boldsymbol{e}} \, .$$

VP vs. VNP

- Valiant's Hypothesis: Prove that symbolic perm_n requires $n^{\omega(1)}$ -size circuit. An *equivalent* version is: Prove $\forall P \neq \forall NP$.
- VP : A family {*f_n*}_{*n*} ∈ VP (over 𝔽) if *f_n* is a poly(*n*)-variate polynomial, of degree poly(*n*) over 𝔽, computed by poly(*n*)-size circuit.
- VNP : A family $\{f_n\}_n \in \text{VNP}$ (over \mathbb{F}) if $\exists \{g_n\}_n \in \text{VP} \& t(n) = \text{poly}(n)$:

$$\left|f_n(\overline{x}) = \sum_{w \in \{0,1\}^{t(n)}} g_n(\overline{x}, w)\right|.$$

- $\{f_n\}_n \in \mathsf{VNP} \implies f_n \text{ is explicit.}$
- Sufficient explicitness (Valiant's Criterion): Suppose φ : [0, c]* → N is a function in the class P/poly. Then, the family {f_n}_n ∈ VNP if

$$f_n(\overline{x}) = \sum_{\boldsymbol{e} \in [0,c]^n} \phi(\boldsymbol{e}) \, \overline{x}^{\boldsymbol{e}} \, .$$

• **Polynomial Identity Testing** (*PIT*): Given a circuit *C*, test whether *C* computes the *zero* polynomial (*deterministically*).

- **Polynomial Identity Testing** (*PIT*): Given a circuit *C*, test whether *C* computes the *zero* polynomial (*deterministically*).
 - *Blackbox*-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere *query access*.

- **Polynomial Identity Testing** (*PIT*): Given a circuit *C*, test whether *C* computes the *zero* polynomial (*deterministically*).
 - *Blackbox*-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere *query access*.
 - Hitting sets: Find a set of points *H* such that any "small" circuit *C* that is computing a nonzero polynomial *must* satisfy *C*(*a*) ≠ 0 for some *a* ∈ *H*.

- **Polynomial Identity Testing** (*PIT*): Given a circuit *C*, test whether *C* computes the *zero* polynomial (*deterministically*).
 - *Blackbox*-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere *query access*.
 - Hitting sets: Find a set of points *H* such that any "small" circuit *C* that is computing a nonzero polynomial *must* satisfy *C*(*a*) ≠ 0 for some *a* ∈ *H*.

Polynomial Identity Lemma (Ore, Demillo-Lipton, Schwartz, Zippel) If $P(\overline{x})$ is a nonzero polynomial of degree *d*, and $S \subseteq \mathbb{F}$ of size at least d + 1, then $P(\mathbf{a}) \neq 0$ for some $\mathbf{a} \in S^n$.

- **Polynomial Identity Testing** (*PIT*): Given a circuit *C*, test whether *C* computes the *zero* polynomial (*deterministically*).
 - *Blackbox*-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere *query access*.
 - Hitting sets: Find a set of points *H* such that any "small" circuit *C* that is computing a nonzero polynomial *must* satisfy *C*(*a*) ≠ 0 for some *a* ∈ *H*.

Polynomial Identity Lemma (Ore, Demillo-Lipton, Schwartz, Zippel) If $P(\overline{x})$ is a nonzero polynomial of degree *d*, and $S \subseteq \mathbb{F}$ of size at least d + 1, then $P(\mathbf{a}) \neq 0$ for some $\mathbf{a} \in S^n$.

This above lemma puts $PIT \in RP$.

VP ≠ VNP

Explicit Hitting Sets

$$f(x) = \sum_{i=1}^{s} Q_i^{e_i}, \deg(Q_i) \le t \text{ and } e_i = \omega(1) \implies s \ge (d/t)^{\Omega(1)}$$

Recall Conjecture C1.

Conjecture C1 and Algebraic Complexity

C1:
$$(x+1)^d = \sum_{i=1}^{d^{\delta_1}} \ell_i^r \implies \left| \bigcup_i \operatorname{supp} (\ell_i) \right| \ge d/r^{\delta_2} = \Omega(d)$$

C1:
$$(x+1)^d = \sum_{i=1}^{d^{\delta_1}} \ell_i^r \implies \left| \bigcup_i \operatorname{supp}(\ell_i) \right| \ge d/r^{\delta_2} = \Omega(d)$$

Theorem 1: Conjecture C1 to PIT

If Conjecture C1 holds for an $r \ge 25$, then blackbox-PIT $\in P$.

Conjecture C1 and Algebraic Complexity

C1:
$$(x+1)^d = \sum_{i=1}^{d^{\delta_1}} \ell_i^r \implies \left| \bigcup_i \operatorname{supp} (\ell_i) \right| \ge d/r^{\delta_2} = \Omega(d)$$

Theorem 1: Conjecture C1 to PIT If Conjecture C1 holds for an $r \ge 25$, then blackbox-PIT $\in P$.

Theorem 2: Conjecture C1 to $VP \neq VNP$ Assume GRH, and Conjecture C1 holds for an $r \ge 25$, then $VP \neq VNP$.

Theorem 1: Conjecture C1 to PIT If Conjecture C1 holds for an $r \ge 25$, then blackbox-PIT $\in P$.

Theorem 2: Conjecture C1 to $VP \neq VNP$ Assume GRH, and Conjecture C1 holds for an $r \ge 25$, then $VP \neq VNP$.

Theorem 2 is *reminiscent* to the following:

Theorem 1: Conjecture C1 to PIT

If Conjecture C1 holds for an $r \ge 25$, then blackbox-PIT $\in P$.

Theorem 2: Conjecture C1 to VP \neq VNP Assume GRH, and Conjecture C1 holds for an $r \ge 25$, then VP \neq VNP.

Theorem 2 is *reminiscent* to the following:

Strong lower bound on sum-of-squares in non-commutative settings implies Permanent is hard [HWY11].

• There are other candidate polynomials for C1, for eg. $\prod_{i \in [d]} (x - i)$, $\sum_{i=0}^{d} 2^{i^2} x^i$. C1 holds for them implies Theorem 1 & 2.

- There are other candidate polynomials for C1, for eg. $\prod_{i \in [d]} (x i)$, $\sum_{i=0}^{d} 2^{i^2} x^i$. C1 holds for them implies Theorem 1 & 2.
- C1 holds for $\sum_{i=0}^{d} 2^{i^2} x^i$ implies VP \neq VNP without GRH!

- There are other candidate polynomials for C1, for eg. $\prod_{i \in [d]} (x i)$, $\sum_{i=0}^{d} 2^{i^2} x^i$. C1 holds for them implies Theorem 1 & 2.
- C1 holds for $\sum_{i=0}^{d} 2^{i^2} x^i$ implies VP \neq VNP without GRH!
- It is *enough* to consider poly-degree restriction on ℓ_i . In fact, for Theorem 1, we can assume deg $(\ell_i) = O(d)$ while for Theorem 2, we can assume deg $(\ell_i) = O(d \log d)$.

- There are other candidate polynomials for C1, for eg. $\prod_{i \in [d]} (x i)$, $\sum_{i=0}^{d} 2^{i^2} x^i$. C1 holds for them implies Theorem 1 & 2.
- C1 holds for $\sum_{i=0}^{d} 2^{i^2} x^i$ implies VP \neq VNP without GRH!
- It is *enough* to consider poly-degree restriction on ℓ_i . In fact, for Theorem 1, we can assume deg $(\ell_i) = O(d)$ while for Theorem 2, we can assume deg $(\ell_i) = O(d \log d)$.
- There is a *relaxed* version of C1 where, instead of the measure $|\bigcup \text{supp}(\ell_i)|$, we look at $\sum_i |\text{supp}(\ell_i)|$.

- There are other candidate polynomials for C1, for eg. $\prod_{i \in [d]} (x i)$, $\sum_{i=0}^{d} 2^{i^2} x^i$. C1 holds for them implies Theorem 1 & 2.
- C1 holds for $\sum_{i=0}^{d} 2^{i^2} x^i$ implies VP \neq VNP without GRH!
- It is *enough* to consider poly-degree restriction on ℓ_i . In fact, for Theorem 1, we can assume deg $(\ell_i) = O(d)$ while for Theorem 2, we can assume deg $(\ell_i) = O(d \log d)$.
- There is a *relaxed* version of C1 where, instead of the measure $|\bigcup \text{supp}(\ell_i)|$, we look at $\sum_i |\text{supp}(\ell_i)|$.
 - We call it $S_{\mathbb{F}}(f, r, s)$. Trivially, $U_{\mathbb{F}}(f, r, s) \leq S_{\mathbb{F}}(f, r, s)$.

- There are other candidate polynomials for C1, for eg. $\prod_{i \in [d]} (x i)$, $\sum_{i=0}^{d} 2^{i^2} x^i$. C1 holds for them implies Theorem 1 & 2.
- C1 holds for $\sum_{i=0}^{d} 2^{i^2} x^i$ implies VP \neq VNP without GRH!
- It is *enough* to consider poly-degree restriction on ℓ_i . In fact, for Theorem 1, we can assume deg $(\ell_i) = O(d)$ while for Theorem 2, we can assume deg $(\ell_i) = O(d \log d)$.
- There is a *relaxed* version of C1 where, instead of the measure $|\bigcup \text{supp}(\ell_i)|$, we look at $\sum_i |\text{supp}(\ell_i)|$.
 - We call it $S_{\mathbb{F}}(f, r, s)$. Trivially, $U_{\mathbb{F}}(f, r, s) \leq S_{\mathbb{F}}(f, r, s)$.
 - We could similarly conjecture (C2) that $S_{\mathbb{F}}(f_d, r, \cdot)$ is large.

- There are other candidate polynomials for C1, for eg. $\prod_{i \in [d]} (x i)$, $\sum_{i=0}^{d} 2^{i^2} x^i$. C1 holds for them implies Theorem 1 & 2.
- C1 holds for $\sum_{i=0}^{d} 2^{i^2} x^i$ implies VP \neq VNP without GRH!
- It is *enough* to consider poly-degree restriction on ℓ_i . In fact, for Theorem 1, we can assume deg $(\ell_i) = O(d)$ while for Theorem 2, we can assume deg $(\ell_i) = O(d \log d)$.
- There is a *relaxed* version of C1 where, instead of the measure $|\bigcup \text{supp}(\ell_i)|$, we look at $\sum_i |\text{supp}(\ell_i)|$.
 - We call it $S_{\mathbb{F}}(f, r, s)$. Trivially, $U_{\mathbb{F}}(f, r, s) \leq S_{\mathbb{F}}(f, r, s)$.
 - We could similarly conjecture (C2) that $S_{\mathbb{F}}(f_d, r, \cdot)$ is large.
 - C2 and GRH implies $VP \neq VNP$;

- There are other candidate polynomials for C1, for eg. $\prod_{i \in [d]} (x i)$, $\sum_{i=0}^{d} 2^{i^2} x^i$. C1 holds for them implies Theorem 1 & 2.
- C1 holds for $\sum_{i=0}^{d} 2^{i^2} x^i$ implies VP \neq VNP without GRH!
- It is *enough* to consider poly-degree restriction on ℓ_i . In fact, for Theorem 1, we can assume deg $(\ell_i) = O(d)$ while for Theorem 2, we can assume deg $(\ell_i) = O(d \log d)$.
- There is a *relaxed* version of C1 where, instead of the measure $|\bigcup \text{supp}(\ell_i)|$, we look at $\sum_i |\text{supp}(\ell_i)|$.
 - We call it $S_{\mathbb{F}}(f, r, s)$. Trivially, $U_{\mathbb{F}}(f, r, s) \leq S_{\mathbb{F}}(f, r, s)$.
 - We could similarly conjecture (C2) that $S_{\mathbb{F}}(f_d, r, \cdot)$ is large.
 - C2 and GRH implies $VP \neq VNP$; it's not clear whether it implies $PIT \in P$.

Circuit Normal Form (CNF) and Algebraic Complexity

It was established in [VSBR83, Sap19] that an *n*-variate, degree *d* polynomial *f*(x), computed by a circuit of size *s*, can be decomposed as

It was established in [VSBR83, Sap19] that an *n*-variate, degree *d* polynomial *f*(*x*), computed by a circuit of size *s*, can be decomposed as

$$f(\overline{x}) = \sum_{i=1}^{s'} f_{i1} \cdot f_{i2} \cdot f_{i3} \cdot f_{i4} \cdot f_{i5} ,$$

It was established in [VSBR83, Sap19] that an *n*-variate, degree *d* polynomial *f*(*x*), computed by a circuit of size *s*, can be decomposed as

$$f(\bar{x}) = \sum_{i=1}^{s'} f_{i1} \cdot f_{i2} \cdot f_{i3} \cdot f_{i4} \cdot f_{i5} ,$$

1. top-fanin
$$s' = poly(s, d)$$
,

It was established in [VSBR83, Sap19] that an *n*-variate, degree *d* polynomial *f*(*x*), computed by a circuit of size *s*, can be decomposed as

$$f(\bar{x}) = \sum_{i=1}^{s'} f_{i1} \cdot f_{i2} \cdot f_{i3} \cdot f_{i4} \cdot f_{i5} ,$$

- 1. top-fanin s' = poly(s, d),
- 2. where each f_{ij} has circuit size at most poly(s, d)

It was established in [VSBR83, Sap19] that an *n*-variate, degree *d* polynomial *f*(*x*), computed by a circuit of size *s*, can be decomposed as

$$f(\bar{x}) = \sum_{i=1}^{s'} f_{i1} \cdot f_{i2} \cdot f_{i3} \cdot f_{i4} \cdot f_{i5} ,$$

- 1. top-fanin s' = poly(s, d),
- 2. where each f_{ij} has circuit size at most poly(s, d)
- 3. $\deg(f_{ij}) \leq d/2$, for all i, j.

It was established in [VSBR83, Sap19] that an *n*-variate, degree *d* polynomial *f*(*x*), computed by a circuit of size *s*, can be decomposed as

$$f(\bar{x}) = \sum_{i=1}^{s'} f_{i1} \cdot f_{i2} \cdot f_{i3} \cdot f_{i4} \cdot f_{i5} ,$$

- 1. top-fanin s' = poly(s, d),
- 2. where each f_{ij} has circuit size at most poly(s, d)
- 3. deg $(f_{ij}) \leq d/2$, for all i, j.
- This circuit normal-form (CNF) has played a key role in all recent depth-reduction results [AV08, Koi12, GKKS13, Tav15].

Given *d*-degree $f(\overline{x})$, computed by size-*s* circuit, we decompose *f* as

$$f(\overline{x}) = \sum_{i=1}^{\text{poly}(s,d)} f_{i1} \cdot f_{i2} \cdot f_{i3} \cdot f_{i4} \cdot f_{i5}$$

Given *d*-degree $f(\overline{x})$, computed by size-*s* circuit, we decompose *f* as

$$f(\bar{x}) = \sum_{i=1}^{\text{poly}(s,d)} f_{i1} \cdot f_{i2} \cdot f_{i3} \cdot f_{i4} \cdot f_{i5}$$

size(f_{ij}) = poly(s, d) and deg(f_{ij}) $\leq d/2$.

Given *d*-degree $f(\overline{x})$, computed by size-*s* circuit, we decompose *f* as

$$f(\bar{x}) = \sum_{i=1}^{\text{poly}(s,d)} f_{i1} \cdot f_{i2} \cdot f_{i3} \cdot f_{i4} \cdot f_{i5}$$

Given *d*-degree $f(\overline{x})$, computed by size-*s* circuit, we decompose *f* as

$$f(\overline{x}) = \sum_{i=1}^{\operatorname{poly}(s,d)} f_{i1} \cdot f_{i2} \cdot f_{i3} \cdot f_{i4} \cdot f_{i5}$$

$$f(\overline{x}) = \sum_{i=1}^{\text{poly}(s,d)} \prod_{j=1}^{5} f_{ij}$$

Given *d*-degree $f(\overline{x})$, computed by size-*s* circuit, we decompose *f* as

$$f(\bar{x}) = \sum_{i=1}^{\text{poly}(s,d)} f_{i1} \cdot f_{i2} \cdot f_{i3} \cdot f_{i4} \cdot f_{i5}$$

$$f(\overline{x}) = \sum_{i=1}^{\operatorname{poly}(s,d)} \prod_{j=1}^{5} f_{ij}$$
$$= \sum_{i=1}^{\operatorname{poly}(s,d)} \prod_{j=1}^{5} \left(\sum_{k=1}^{\operatorname{poly}(s,d)} \prod_{l=1}^{5} f_{ijkl} \right)$$

Given *d*-degree $f(\overline{x})$, computed by size-*s* circuit, we decompose *f* as

$$f(\bar{x}) = \sum_{i=1}^{\text{poly}(s,d)} f_{i1} \cdot f_{i2} \cdot f_{i3} \cdot f_{i4} \cdot f_{i5}$$

$$f(\overline{x}) = \sum_{i=1}^{\operatorname{poly}(s,d)} \prod_{j=1}^{5} f_{ij}$$
$$= \sum_{i=1}^{\operatorname{poly}(s,d)} \prod_{j=1}^{5} \left(\sum_{k=1}^{\operatorname{poly}(s,d)} \prod_{l=1}^{5} f_{ijkl} \right)$$
$$= \sum_{i=1}^{\operatorname{poly}(s,d)} \prod_{j=1}^{25} g_{ij}$$

Given *d*-degree $f(\overline{x})$, computed by size-*s* circuit, we decompose *f* as

$$f(\bar{x}) = \sum_{i=1}^{\text{poly}(s,d)} f_{i1} \cdot f_{i2} \cdot f_{i3} \cdot f_{i4} \cdot f_{i5}$$

$$f(\overline{x}) = \sum_{i=1}^{\text{poly}(s,d)} \prod_{j=1}^{5} f_{ij}$$
$$= \sum_{i=1}^{\text{poly}(s,d)} \prod_{j=1}^{5} \left(\sum_{k=1}^{\text{poly}(s,d)} \prod_{l=1}^{5} f_{ijkl} \right)$$
$$= \sum_{i=1}^{\text{poly}(s,d)} \prod_{j=1}^{25} g_{ij} \qquad \because \prod \sum_{l=1}^{a} \sum_{j=1}^{b} \prod_{l=1}^{c} = \sum_{l=1}^{b^{a}} \prod_{l=1}^{a \cdot c}$$

Given *d*-degree $f(\overline{x})$, computed by size-*s* circuit, we decompose *f* as

$$f(\bar{x}) = \sum_{i=1}^{\text{poly}(s,d)} f_{i1} \cdot f_{i2} \cdot f_{i3} \cdot f_{i4} \cdot f_{i5}$$

size(f_{ij}) = poly(s, d) and deg(f_{ij}) $\leq d/2$. Apply CNF to each of f_{ij} to get:

$$f(\overline{x}) = \sum_{i=1}^{\operatorname{poly}(s,d)} \prod_{j=1}^{5} f_{ij}$$
$$= \sum_{i=1}^{\operatorname{poly}(s,d)} \prod_{j=1}^{5} \left(\sum_{k=1}^{\operatorname{poly}(s,d)} \prod_{l=1}^{5} f_{ijkl} \right)$$
$$= \sum_{i=1}^{\operatorname{poly}(s,d)} \prod_{i=1}^{25} g_{ij} \qquad \because \prod^{a} \sum_{l=1}^{b} \prod^{c} = \sum^{b^{a}} \prod^{a \cdot c}$$

Note that $\deg(g_{ij}) \leq d/4$.

Fischer's Trick (Fischer94)

 \mathbb{F} be a field of characteristic 0 or > *m*. One can write $g = \prod_{i \in [m]} g_i$ as:

Fischer's Trick (Fischer94)

 \mathbb{F} be a field of characteristic 0 or > *m*. One can write $g = \prod_{i \in [m]} g_i$ as:

$$g = g_1 \cdot g_2 \cdot \ldots \cdot g_m = \sum_{j=1}^{2^m} c_j \cdot h_j^m$$

where $c_j \in \mathbb{F}$ and $h_j \in \operatorname{span}_{\mathbb{F}}(g_i \mid i \in [m])$, for $j \in [2^m]$.

Fischer's Trick (Fischer94)

 \mathbb{F} be a field of characteristic 0 or > *m*. One can write $g = \prod_{i \in [m]} g_i$ as:

$$g = g_1 \cdot g_2 \cdot \ldots \cdot g_m = \sum_{j=1}^{2^m} c_j \cdot h_j^m$$

where $c_j \in \mathbb{F}$ and $h_j \in \operatorname{span}_{\mathbb{F}} (g_i \mid i \in [m])$, for $j \in [2^m]$.

From previous slide, we expressed *d*-degree *s*-sized $f(\overline{x}) = \sum \prod g_{ij}$ with $\deg(g_{ij}) \le d/4$.

Fischer's Trick (Fischer94)

 \mathbb{F} be a field of characteristic 0 or > *m*. One can write $g = \prod_{i \in [m]} g_i$ as:

$$g = g_1 \cdot g_2 \cdot \ldots \cdot g_m = \sum_{j=1}^{2^m} c_j \cdot h_j^m$$

where $c_j \in \mathbb{F}$ and $h_j \in \operatorname{span}_{\mathbb{F}} (g_i \mid i \in [m])$, for $j \in [2^m]$.

From previous slide, we expressed *d*-degree *s*-sized $f(\overline{x}) = \sum \prod g_{ij}$ with $\deg(g_{ij}) \le d/4$. Apply Fischer's trick on each $\prod_{j \in [25]} g_{ij}$ to get:

$$f(\overline{x}) = \sum_{i=1}^{\text{poly}(s,d)} \prod_{j=1}^{25} g_{ij}$$

Fischer's Trick (Fischer94)

 \mathbb{F} be a field of characteristic 0 or > *m*. One can write $g = \prod_{i \in [m]} g_i$ as:

$$g = g_1 \cdot g_2 \cdot \ldots \cdot g_m = \sum_{j=1}^{2^m} c_j \cdot h_j^m$$

where $c_j \in \mathbb{F}$ and $h_j \in \operatorname{span}_{\mathbb{F}} (g_i \mid i \in [m])$, for $j \in [2^m]$.

From previous slide, we expressed *d*-degree *s*-sized $f(\overline{x}) = \sum \prod g_{ij}$ with $\deg(g_{ij}) \le d/4$. Apply Fischer's trick on each $\prod_{j \in [25]} g_{ij}$ to get:

$$f(\overline{x}) = \sum_{i=1}^{\text{poly}(s,d)} \prod_{j=1}^{25} g_{ij}$$
$$= \sum_{i=1}^{\text{poly}(s,d)} c_i \cdot g_i^{25}$$

CNF to sum of 25th-powers

Fischer's Trick (Fischer94)

 \mathbb{F} be a field of characteristic 0 or > *m*. One can write $g = \prod_{i \in [m]} g_i$ as:

$$g = g_1 \cdot g_2 \cdot \ldots \cdot g_m = \sum_{j=1}^{2^m} c_j \cdot h_j^m$$

where $c_j \in \mathbb{F}$ and $h_j \in \operatorname{span}_{\mathbb{F}} (g_i \mid i \in [m])$, for $j \in [2^m]$.

From previous slide, we expressed *d*-degree *s*-sized $f(\overline{x}) = \sum \prod g_{ij}$ with $\deg(g_{ij}) \le d/4$. Apply Fischer's trick on each $\prod_{j \in [25]} g_{ij}$ to get:

$$f(\overline{x}) = \sum_{i=1}^{\text{poly}(s,d)} \prod_{j=1}^{25} g_{ij}$$
$$= \sum_{i=1}^{\text{poly}(s,d)} c_i \cdot g_i^{25}$$

where $\deg(g_i) \leq d/4$.

Sum-Identity Lemma (DST20)

Let \mathbb{F} be a field of characteristic 0 or large. Let $h(\overline{x}) \in \mathbb{F}[\overline{x}]$ and $0 \le m \le r$. There exist $c_{m,i} \in \mathbb{F}$ and *distinct* $\lambda_i \in \mathbb{F}$, for $0 \le i \le r$, such that

$$h(\overline{x})^m = \sum_{i=0}^r c_{m,i} \left(h(\overline{x}) + \lambda_i\right)^r.$$

Sum-Identity Lemma (DST20)

Let \mathbb{F} be a field of characteristic 0 or large. Let $h(\overline{x}) \in \mathbb{F}[\overline{x}]$ and $0 \le m \le r$. There exist $c_{m,i} \in \mathbb{F}$ and *distinct* $\lambda_i \in \mathbb{F}$, for $0 \le i \le r$, such that

$$h(\overline{x})^m = \sum_{i=0}^r c_{m,i} \left(h(\overline{x}) + \lambda_i\right)^r.$$

Proof Sketch.

Sum-Identity Lemma (DST20)

Let \mathbb{F} be a field of characteristic 0 or large. Let $h(\overline{x}) \in \mathbb{F}[\overline{x}]$ and $0 \le m \le r$. There exist $c_{m,i} \in \mathbb{F}$ and *distinct* $\lambda_i \in \mathbb{F}$, for $0 \le i \le r$, such that

$$h(\overline{x})^m = \sum_{i=0}^r c_{m,i} \left(h(\overline{x}) + \lambda_i\right)^r.$$

Proof Sketch.

Consider $(h(\overline{x}) + t)^r = \sum_{i=0}^r {r \choose i} h^i \cdot t^{r-i}$.

Sum-Identity Lemma (DST20)

Let \mathbb{F} be a field of characteristic 0 or large. Let $h(\overline{x}) \in \mathbb{F}[\overline{x}]$ and $0 \le m \le r$. There exist $c_{m,i} \in \mathbb{F}$ and *distinct* $\lambda_i \in \mathbb{F}$, for $0 \le i \le r$, such that

$$h(\overline{x})^m = \sum_{i=0}^r c_{m,i} \left(h(\overline{x}) + \lambda_i\right)^r.$$

Proof Sketch.

Consider $(h(\overline{x}) + t)^r = \sum_{i=0}^r {r \choose i} h^i \cdot t^{r-i}$. As $m \le r$, one of the h^i must be h^m .

Sum-Identity Lemma (DST20)

Let \mathbb{F} be a field of characteristic 0 or large. Let $h(\overline{x}) \in \mathbb{F}[\overline{x}]$ and $0 \le m \le r$. There exist $c_{m,i} \in \mathbb{F}$ and *distinct* $\lambda_i \in \mathbb{F}$, for $0 \le i \le r$, such that

$$h(\overline{x})^m = \sum_{i=0}^r c_{m,i} \left(h(\overline{x}) + \lambda_i\right)^r.$$

Proof Sketch.

Consider $(h(\overline{x}) + t)^r = \sum_{i=0}^r {r \choose i} h^i \cdot t^{r-i}$. As $m \le r$, one of the h^i must be h^m . Interpolate at $t = \lambda_i$ for $0 \le i \le r$ (r + 1-many distinct points).

Sum-Identity Lemma (DST20)

Let \mathbb{F} be a field of characteristic 0 or large. Let $h(\overline{x}) \in \mathbb{F}[\overline{x}]$ and $0 \le m \le r$. There exist $c_{m,i} \in \mathbb{F}$ and *distinct* $\lambda_i \in \mathbb{F}$, for $0 \le i \le r$, such that

$$h(\overline{x})^m = \sum_{i=0}^r c_{m,i} \left(h(\overline{x}) + \lambda_i\right)^r.$$

Proof Sketch.

Consider $(h(\overline{x}) + t)^r = \sum_{i=0}^r {r \choose i} h^i \cdot t^{r-i}$. As $m \le r$, one of the h^i must be h^m . Interpolate at $t = \lambda_i$ for $0 \le i \le r$ (r + 1-many distinct points).

$$\begin{bmatrix} \binom{r}{0}\lambda_0^r & \binom{r}{1}\lambda_0^{r-1} & \dots & \binom{r}{r}\lambda_0^n \\ \binom{r}{0}\lambda_1^r & \binom{r}{1}\lambda_1^{r-1} & \dots & \binom{r}{r}\lambda_1^n \\ \vdots & \vdots & \vdots & \vdots \\ \binom{r}{0}\lambda_r^r & \binom{r}{1}\lambda_r^{r-1} & \dots & \binom{r}{r}\lambda_r^n \end{bmatrix} \cdot \begin{bmatrix} 1 \\ h \\ \vdots \\ h^r \end{bmatrix} = \begin{bmatrix} (h(\overline{x}) + \lambda_0)^r \\ (h(\overline{x}) + \lambda_1)^r \\ \vdots \\ (h(\overline{x}) + \lambda_r)^r \end{bmatrix}$$

We have already established that *n*-variate, *d*-degree $f(\overline{x})$ computed by size-*s* circuit can be written as poly(*s*, *d*)-many sum of 25th-powers of degree at most d/4.

CNF to sum of constant *r*th-power

$$f(\overline{x}) = \sum_{i=1}^{\operatorname{poly}(s,d)} c_i \cdot g_i^{25}$$

CNF to sum of constant *r*th-power

$$f(\overline{x}) = \sum_{i=1}^{\operatorname{poly}(s,d)} c_i \cdot g_i^{25}$$
$$= \sum_{i=1}^{\operatorname{poly}(s,d)} \left(\sum_{j=0}^r c_{ij} \cdot (g_i + \lambda_j)^r \right)$$

$$\begin{aligned} f(\overline{x}) &= \sum_{i=1}^{\operatorname{poly}(s,d)} c_i \cdot g_i^{25} \\ &= \sum_{i=1}^{\operatorname{poly}(s,d)} \left(\sum_{j=0}^r c_{ij} \cdot \left(g_i + \lambda_j \right)^r \right) \\ &= \sum_{i=1}^{(r+1) \cdot \operatorname{poly}(s,d)} c_i' \cdot \tilde{g}_i^r \end{aligned}$$

CNF to sum of constant *r*th-power

f

$$\begin{aligned} (\overline{x}) &= \sum_{i=1}^{\operatorname{poly}(s,d)} c_i \cdot g_i^{25} \\ &= \sum_{i=1}^{\operatorname{poly}(s,d)} \left(\sum_{j=0}^r c_{ij} \cdot \left(g_i + \lambda_j\right)^r \right) \\ &= \sum_{i=1}^{(r+1) \cdot \operatorname{poly}(s,d)} c_i' \cdot \tilde{g}_i^r \qquad \text{where } \deg(\tilde{g}_i) \le d/4 \text{ and } c_i' \in \mathbb{F} \end{aligned}$$

CNF to sum of constant *r*th-power

f

$$\begin{aligned} (\overline{x}) &= \sum_{i=1}^{\operatorname{poly}(s,d)} c_i \cdot g_i^{25} \\ &= \sum_{i=1}^{\operatorname{poly}(s,d)} \left(\sum_{j=0}^r c_{ij} \cdot (g_i + \lambda_j)^r \right) \\ &= \sum_{i=1}^{(r+1) \cdot \operatorname{poly}(s,d)} c_i' \cdot \tilde{g}_i^r \qquad \text{where } \deg(\tilde{g}_i) \leq d/4 \text{ and } c_i' \in \mathbb{F} \\ &\in \sum_{i=1}^{\operatorname{poly}(s,d)} \bigwedge \sum_{i=1}^r \prod_{j=1}^{d/4} . \end{aligned}$$

Proof Idea of Main Theorems

Proof of Theorem 1: Conjecture C1 to PIT

• Assume C1 holds i.e. for $f_d := (x + 1)^d$, $U_{\mathbb{F}}(f_d, r, d^{\delta_1}) \ge d/r^{\delta_2}$.

- Assume C1 holds i.e. for $f_d := (x + 1)^d$, $U_{\mathbb{F}}(f_d, r, d^{\delta_1}) \ge d/r^{\delta_2}$.
- Idea: use C1 to prove that a *fixed* constant *k*-variate O(n)-degree hard polynomial family $(P_{k,n})_n$ exists i.e. size $(P_{k,n}) = n^{\Omega(1)}$.

- Assume C1 holds i.e. for $f_d := (x + 1)^d$, $U_{\mathbb{F}}(f_d, r, d^{\delta_1}) \ge d/r^{\delta_2}$.
- Idea: use C1 to prove that a *fixed* constant *k*-variate O(n)-degree hard polynomial family $(P_{k,n})_n$ exists i.e. size $(P_{k,n}) = n^{\Omega(1)}$.
 - Use f_d to construct a k-variate O(n) degree polynomial $P_{k,n}$ (d := d(n)).

- Assume C1 holds i.e. for $f_d := (x + 1)^d$, $U_{\mathbb{F}}(f_d, r, d^{\delta_1}) \ge d/r^{\delta_2}$.
- Idea: use C1 to prove that a *fixed* constant *k*-variate O(n)-degree hard polynomial family $(P_{k,n})_n$ exists i.e. size $(P_{k,n}) = n^{\Omega(1)}$.
 - Use f_d to construct a k-variate O(n) degree polynomial $P_{k,n}$ (d := d(n)).
- Use GKSS19: constant *k*-variate (*k* ≥ 4) explicit hard polynomial implies blackbox-PIT ∈ P.

• Fix a large k .

• Fix a *large* $k \ (k \ge \max(17(\delta_2 + 1), 19r/\delta_1))$.

• Fix a *large k*. For every $n \in \mathbb{N}$, choose the *largest d* := d(n) which is $\leq (n+1)^k - 1$ and $d \in I_r$.

• Fix a *large k*. For *every* $n \in \mathbb{N}$, choose the *largest d* := d(n) which is $\leq (n+1)^k - 1$ and $d \in I_r$. Observe: $d = \Omega((n+1)^k)$.

- Fix a *large k*. For *every* $n \in \mathbb{N}$, choose the *largest d* := d(n) which is $\leq (n+1)^k 1$ and $d \in I_r$. Observe: $d = \Omega((n+1)^k)$.
- Apply *inverse Kronecker substitution* on f_d to construct $P_{k,n}$:

- Fix a *large k*. For *every* $n \in \mathbb{N}$, choose the *largest* d := d(n) which is $\leq (n+1)^k 1$ and $d \in I_r$. Observe: $d = \Omega((n+1)^k)$.
- Apply *inverse Kronecker substitution* on f_d to construct $P_{k,n}$:

$$P_{k,n}(x_1,\ldots,x_k)\mapsto P_{k,n}\left(x^{(n+1)^0},\ldots,x^{(n+1)^{k-1}}\right)=f_d(x),$$

- Fix a *large k*. For *every* $n \in \mathbb{N}$, choose the *largest d* := d(n) which is $\leq (n+1)^k 1$ and $d \in I_r$. Observe: $d = \Omega((n+1)^k)$.
- Apply *inverse Kronecker substitution* on f_d to construct $P_{k,n}$:

$$P_{k,n}(x_1,\ldots,x_k)\mapsto P_{k,n}\left(x^{(n+1)^0},\ldots,x^{(n+1)^{k-1}}\right)=f_d(x),$$

 $P_{k,n}$ is a *k*-variate polynomial with individual degree at most *n*. Thus, it is a bijection between supp $(P_{k,n})$ and supp (f_d) .

Conjecture C1 to constant k-variate hard polynomial

- Fix a *large k*. For *every* $n \in \mathbb{N}$, choose the *largest d* := d(n) which is $\leq (n+1)^k 1$ and $d \in I_r$. Observe: $d = \Omega((n+1)^k)$.
- Apply *inverse Kronecker substitution* on f_d to construct $P_{k,n}$:

$$P_{k,n}(x_1,\ldots,x_k)\mapsto P_{k,n}\left(x^{(n+1)^0},\ldots,x^{(n+1)^{k-1}}\right)=f_d(x),$$

 $P_{k,n}$ is a *k*-variate polynomial with individual degree at most *n*. Thus, it is a bijection between supp $(P_{k,n})$ and supp (f_d) .

• Note that: $\deg(P_{k,n}) \le k \cdot n = O(n)$.

Conjecture C1 to constant k-variate hard polynomial

- Fix a *large k*. For *every* $n \in \mathbb{N}$, choose the *largest d* := d(n) which is $\leq (n+1)^k 1$ and $d \in I_r$. Observe: $d = \Omega((n+1)^k)$.
- Apply *inverse Kronecker substitution* on f_d to construct $P_{k,n}$:

$$P_{k,n}(x_1,\ldots,x_k) \mapsto P_{k,n}\left(x^{(n+1)^0},\ldots,x^{(n+1)^{k-1}}\right) = f_d(x),$$

 $P_{k,n}$ is a *k*-variate polynomial with individual degree at most *n*. Thus, it is a bijection between supp $(P_{k,n})$ and supp (f_d) .

- Note that: $\deg(P_{k,n}) \leq k \cdot n = O(n)$.
- **Claim:** size $(P_{k,n}) = (\deg(P_{k,n}))^{\Omega(1)} = d^{\Omega(1)}$.

Conjecture C1 to constant k-variate hard polynomial

- Fix a *large k*. For *every* $n \in \mathbb{N}$, choose the *largest* d := d(n) which is $\leq (n+1)^k 1$ and $d \in I_r$. Observe: $d = \Omega((n+1)^k)$.
- Apply *inverse Kronecker substitution* on f_d to construct $P_{k,n}$:

$$P_{k,n}(x_1,\ldots,x_k)\mapsto P_{k,n}\left(x^{(n+1)^0},\ldots,x^{(n+1)^{k-1}}\right)=f_d(x),$$

 $P_{k,n}$ is a *k*-variate polynomial with individual degree at most *n*. Thus, it is a bijection between supp $(P_{k,n})$ and supp (f_d) .

- Note that: $\deg(P_{k,n}) \le k \cdot n = O(n)$.
- **Claim:** size $(P_{k,n}) = (\deg(P_{k,n}))^{\Omega(1)} = d^{\Omega(1)}$. Proof by contradiction: If $P_{k,n}$ is *not* hard, then C1 doesn't hold for *infinitely* many $d \in I_r$.

• Suppose, size $(P_{k,n}) \leq d^{1/\mu}$ (μ , depending on r, δ_1, δ_2 , fixed later).

- Suppose, size $(P_{k,n}) \leq d^{1/\mu}$ (μ , depending on r, δ_1, δ_2 , fixed later).
- We know, using the *derived* CNF, $P_{k,n}$ can be written as

$$P_{k,n} = \sum_{i=1}^{\operatorname{poly}(d^{1/\mu}, kn)} c'_i \cdot \tilde{g}'_i$$

where $\deg(\tilde{g}_i) \leq kn/4$.

- Suppose, size $(P_{k,n}) \leq d^{1/\mu}$ (μ , depending on r, δ_1, δ_2 , fixed later).
- We know, using the *derived* CNF, $P_{k,n}$ can be written as

$$P_{k,n} = \sum_{i=1}^{\operatorname{poly}(d^{1/\mu}, kn)} c'_i \cdot \tilde{g}'_i$$

where $\deg(\tilde{g}_i) \leq kn/4$.

• Direct counting argument shows: $\left|\bigcup_{i} \operatorname{supp}(\tilde{g}_{i})\right| \leq {\binom{k+kn/4}{k}}$.

- Suppose, size $(P_{k,n}) \leq d^{1/\mu}$ (μ , depending on r, δ_1, δ_2 , fixed later).
- We know, using the *derived* CNF, $P_{k,n}$ can be written as

$$P_{k,n} = \sum_{i=1}^{\operatorname{poly}(\sigma^{1/\mu}, kn)} c'_i \cdot \tilde{g}'_i$$

where $\deg(\tilde{g}_i) \leq kn/4$.

- Direct counting argument shows: $\left|\bigcup_{i} \operatorname{supp}(\tilde{g}_{i})\right| \leq {\binom{k+kn/4}{k}}$.
- Let ϕ be the Kronecker map $\phi : x_i \mapsto x^{(n+1)^{i-1}}$ for $i \in [k]$. Then,

$$f_d = \phi(P_{k,n}) = \sum_{i=1}^{\operatorname{poly}(d^{1/\mu},kn)} c'_i \cdot \phi(\tilde{g}_i)^r$$

Proof of hardness of $P_{k,n}$

- Suppose, size $(P_{k,n}) \leq d^{1/\mu}$ (μ , depending on r, δ_1, δ_2 , fixed later).
- We know, using the *derived* CNF, $P_{k,n}$ can be written as

$$P_{k,n} = \sum_{i=1}^{\operatorname{poly}(\sigma^{1/\mu}, kn)} c'_i \cdot \tilde{g}'_i$$

where $\deg(\tilde{g}_i) \leq kn/4$.

- Direct counting argument shows: $\left|\bigcup_{i} \operatorname{supp}(\tilde{g}_{i})\right| \leq {\binom{k+kn/4}{k}}$.
- Let ϕ be the Kronecker map $\phi : x_i \mapsto x^{(n+1)^{i-1}}$ for $i \in [k]$. Then,

$$f_d = \phi(P_{k,n}) = \sum_{i=1}^{\operatorname{poly}(d^{1/\mu}, kn)} c'_i \cdot \phi(\tilde{g}_i)^{\prime}$$

• ϕ cannot increase the union-support or the top fan-in.

• f_d has sum of *r*-th power representation with top fan-in $s_0 := \text{poly}(d^{1/\mu}, kn)$ and support-union at most $s_1 := \binom{k+kn/4}{k}$.

- f_d has sum of *r*-th power representation with top fan-in $s_0 := \text{poly}(d^{1/\mu}, kn)$ and support-union at most $s_1 := \binom{k+kn/4}{k}$.
- This means, in notation: $U_{\mathbb{F}}(f_d, r, s_0) \leq s_1$.

- f_d has sum of *r*-th power representation with top fan-in $s_0 := \text{poly}(d^{1/\mu}, kn)$ and support-union at most $s_1 := \binom{k+kn/4}{k}$.
- This means, in notation: $U_{\mathbb{F}}(f_d, r, s_0) \leq s_1$.
- Choose μ appropriately so that $s_0 \leq d^{\delta_1}$ and $s_1 < d/r^{\delta_2}$.

- f_d has sum of *r*-th power representation with top fan-in $s_0 := \text{poly}(d^{1/\mu}, kn)$ and support-union at most $s_1 := \binom{k+kn/4}{k}$.
- This means, in notation: $U_{\mathbb{F}}(f_d, r, s_0) \leq s_1$.
- Choose μ appropriately so that $s_0 \leq d^{\delta_1}$ and $s_1 < d/r^{\delta_2}$.
- This means, $U_{\mathbb{F}}(f_d, r, d^{\delta_1}) < d/r^{\delta_2}$ for infinitely many $d \in I_r$, a contradiction!

- f_d has sum of *r*-th power representation with top fan-in $s_0 := \text{poly}(d^{1/\mu}, kn)$ and support-union at most $s_1 := \binom{k+kn/4}{k}$.
- This means, in notation: $U_{\mathbb{F}}(f_d, r, s_0) \leq s_1$.
- Choose μ appropriately so that $s_0 \leq d^{\delta_1}$ and $s_1 < d/r^{\delta_2}$.
- This means, $U_{\mathbb{F}}(f_d, r, d^{\delta_1}) < d/r^{\delta_2}$ for infinitely many $d \in I_r$, a contradiction!
- $P_{k,n}$ is hard \implies PIT $\in \mathsf{P}$ (using GKSS19).

- f_d has sum of *r*-th power representation with top fan-in $s_0 := \text{poly}(d^{1/\mu}, kn)$ and support-union at most $s_1 := \binom{k+kn/4}{k}$.
- This means, in notation: $U_{\mathbb{F}}(f_d, r, s_0) \leq s_1$.
- Choose μ appropriately so that $s_0 \leq d^{\delta_1}$ and $s_1 < d/r^{\delta_2}$.
- This means, $U_{\mathbb{F}}(f_d, r, d^{\delta_1}) < d/r^{\delta_2}$ for infinitely many $d \in I_r$, a contradiction!
- $P_{k,n}$ is hard \implies PIT $\in \mathsf{P}$ (using GKSS19).
- Instead of 25-CNF, we could have used 5-CNF, then $s_1 := \binom{k+kn/2}{k}$ which is > *d*. Thus, $r \ge 25$ is *required*!

• Fix a large constant n.

• Fix a *large constant* n. For *every* $k \in \mathbb{N}$, choose the *largest* d := d(k) which is $\leq (n + 1)^k - 1$ and $d \in I_r$.

• Fix a *large constant* n. For *every* $k \in \mathbb{N}$, choose the *largest* d := d(k) which is $\leq (n+1)^k - 1$ and $d \in I_r$. Thus, $d = \Omega((n+1)^k) = 2^{\Omega(k)}$.

- Fix a *large constant* n. For *every* $k \in \mathbb{N}$, choose the *largest* d := d(k) which is $\leq (n+1)^k 1$ and $d \in I_r$. Thus, $d = \Omega((n+1)^k) = 2^{\Omega(k)}$.
- From f_d construct $P_{k,n}$, a *k*-variate, *n*-individual degree polynomial:

$$P_{k,n}(x_1,\ldots,x_k)\mapsto P_{k,n}\left(x^{(n+1)^0},\ldots,x^{(n+1)^{k-1}}\right)=f_d(x),$$

- Fix a *large constant* n. For *every* $k \in \mathbb{N}$, choose the *largest* d := d(k) which is $\leq (n+1)^k 1$ and $d \in I_r$. Thus, $d = \Omega((n+1)^k) = 2^{\Omega(k)}$.
- From f_d construct $P_{k,n}$, a *k*-variate, *n*-individual degree polynomial:

$$P_{k,n}(x_1,\ldots,x_k)\mapsto P_{k,n}\left(x^{(n+1)^0},\ldots,x^{(n+1)^{k-1}}\right)=f_d(x),$$

• Note that: $\deg(P_{k,n}) \le k \cdot n = O(k)$.

- Fix a *large constant* n. For *every* $k \in \mathbb{N}$, choose the *largest* d := d(k) which is $\leq (n+1)^k 1$ and $d \in I_r$. Thus, $d = \Omega((n+1)^k) = 2^{\Omega(k)}$.
- From f_d construct $P_{k,n}$, a *k*-variate, *n*-individual degree polynomial:

$$P_{k,n}(x_1,\ldots,x_k)\mapsto P_{k,n}\left(x^{(n+1)^0},\ldots,x^{(n+1)^{k-1}}\right)=f_d(x),$$

- Note that: $\deg(P_{k,n}) \le k \cdot n = O(k)$.
- We will show that Conjecture C1 implies size $(P_{k,n}) \ge d^{\Omega(1)} = 2^{\Omega(k)} = 2^{\Omega(\deg(P_{k,n}))} \implies \{P_{k,n}\}_k \notin VP.$

- Fix a *large constant* n. For *every* $k \in \mathbb{N}$, choose the *largest* d := d(k) which is $\leq (n+1)^k 1$ and $d \in I_r$. Thus, $d = \Omega((n+1)^k) = 2^{\Omega(k)}$.
- From f_d construct $P_{k,n}$, a *k*-variate, *n*-individual degree polynomial:

$$P_{k,n}(x_1,\ldots,x_k)\mapsto P_{k,n}\left(x^{(n+1)^0},\ldots,x^{(n+1)^{k-1}}\right)=f_d(x),$$

- Note that: $\deg(P_{k,n}) \le k \cdot n = O(k)$.
- We will show that Conjecture C1 implies size $(P_{k,n}) \ge d^{\Omega(1)} = 2^{\Omega(k)} = 2^{\Omega(\deg(P_{k,n}))} \implies \{P_{k,n}\}_k \notin VP.$
- Assume GRH and VP = VNP, we will show that $\{P_{k,n}\}_k \in VP$.

- Fix a *large constant* n. For *every* $k \in \mathbb{N}$, choose the *largest* d := d(k) which is $\leq (n+1)^k 1$ and $d \in I_r$. Thus, $d = \Omega((n+1)^k) = 2^{\Omega(k)}$.
- From f_d construct $P_{k,n}$, a *k*-variate, *n*-individual degree polynomial:

$$P_{k,n}(x_1,\ldots,x_k)\mapsto P_{k,n}\left(x^{(n+1)^0},\ldots,x^{(n+1)^{k-1}}\right)=f_d(x),$$

- Note that: $\deg(P_{k,n}) \le k \cdot n = O(k)$.
- We will show that Conjecture C1 implies size $(P_{k,n}) \ge d^{\Omega(1)} = 2^{\Omega(k)} = 2^{\Omega(\deg(P_{k,n}))} \implies \{P_{k,n}\}_k \notin VP.$
- Assume GRH and VP = VNP, we will show that $\{P_{k,n}\}_k \in VP$.
- Thus, GRH and Conjecture C1 \implies VP \neq VNP.

• One can write $P_{k,n}(\overline{x})$ as

$$P_{k,n}(\overline{x}) = \sum_{\overline{e} \in [0,c]^k} \begin{pmatrix} d \\ e \end{pmatrix} \cdot \overline{x}^{\overline{e}}$$

• One can write $P_{k,n}(\overline{x})$ as

$$P_{k,n}(\overline{x}) = \sum_{\overline{e} \in [0,c]^k} \begin{pmatrix} d \\ e \end{pmatrix} \cdot \overline{x}^{\overline{e}}$$

• $\binom{d}{e}$ are computable in complexity class CH (Counting Hierarchy).

• One can write $P_{k,n}(\overline{x})$ as

$$P_{k,n}(\overline{x}) = \sum_{\overline{e} \in [0,c]^k} \begin{pmatrix} d \\ e \end{pmatrix} \cdot \overline{x}^{\overline{e}}$$

- $\binom{d}{e}$ are computable in complexity class CH (Counting Hierarchy).
- Bürgisser proved (in 2000) that if VP = VNP and GRH, then CH = P/poly. This means, (^d_p) are computable in P/poly.

• One can write $P_{k,n}(\overline{x})$ as

$$P_{k,n}(\overline{x}) = \sum_{\overline{e} \in [0,c]^k} \begin{pmatrix} d \\ e \end{pmatrix} \cdot \overline{x}^{\overline{e}}$$

- $\binom{d}{e}$ are computable in complexity class CH (Counting Hierarchy).
- Bürgisser proved (in 2000) that if VP = VNP and GRH, then CH = P/poly. This means, (^d_p) are computable in P/poly.
- Using Valiant's Criterion, $\{P_{k,n}\}_k \in VNP = VP$.

From C1 to $\overline{\{P_{k,n}\}_k \notin \mathsf{VP}}$

• Assume size $(P_{k,n}) \le d^{1/\mu}$; where μ depends on r, δ_1, δ_2 , fixed later.

- Assume size $(P_{k,n}) \leq d^{1/\mu}$; where μ depends on r, δ_1, δ_2 , fixed later.
- We know, using the *derived* CNF, $P_{k,n}$ can be written as

$$P_{k,n} = \sum_{i=1}^{\operatorname{poly}(d^{1/\mu}, kn)} c'_i \cdot \tilde{g}'_i$$

where $\deg(\tilde{g}_i) \leq kn/4$.

- Assume size $(P_{k,n}) \leq d^{1/\mu}$; where μ depends on r, δ_1, δ_2 , fixed later.
- We know, using the *derived* CNF, $P_{k,n}$ can be written as

$$P_{k,n} = \sum_{i=1}^{\operatorname{poly}(d^{1/\mu}, kn)} c'_i \cdot \tilde{g}'_i$$

where $\deg(\tilde{g}_i) \leq kn/4$.

• Direct counting argument shows: $\left|\bigcup_{i} \operatorname{supp}(\tilde{g}_{i})\right| \leq {\binom{k+kn/4}{k}}$.

- Assume size $(P_{k,n}) \le d^{1/\mu}$; where μ depends on r, δ_1, δ_2 , fixed later.
- We know, using the *derived* CNF, $P_{k,n}$ can be written as

$$P_{k,n} = \sum_{i=1}^{\operatorname{poly}(d^{1/\mu}, kn)} c'_i \cdot \tilde{g}'_i$$

where $\deg(\tilde{g}_i) \leq kn/4$.

- Direct counting argument shows: $\left|\bigcup_{i} \operatorname{supp}(\tilde{g}_{i})\right| \leq {\binom{k+kn/4}{k}}$.
- Let ϕ be the Kronecker map $\phi : x_i \mapsto x^{(n+1)^{i-1}}$ for $i \in [k]$. Then,

$$f_d = \phi(P_{k,n}) = \sum_{i=1}^{\operatorname{poly}(d^{1/\mu}, kn)} c'_i \cdot \phi(\tilde{g}_i)^r$$

- Assume size $(P_{k,n}) \leq d^{1/\mu}$; where μ depends on r, δ_1, δ_2 , fixed later.
- We know, using the *derived* CNF, $P_{k,n}$ can be written as

$$P_{k,n} = \sum_{i=1}^{\operatorname{poly}(\sigma^{1/\mu}, kn)} c'_i \cdot \tilde{g}'_i$$

where $\deg(\tilde{g}_i) \leq kn/4$.

- Direct counting argument shows: $\left|\bigcup_{i} \operatorname{supp}(\tilde{g}_{i})\right| \leq {\binom{k+kn/4}{k}}$.
- Let ϕ be the Kronecker map $\phi : x_i \mapsto x^{(n+1)^{i-1}}$ for $i \in [k]$. Then,

$$f_d = \phi(P_{k,n}) = \sum_{i=1}^{\operatorname{poly}(d^{1/\mu}, kn)} c'_i \cdot \phi(\tilde{g}_i)^{t}$$

• ϕ cannot increase the union-support or the top fan-in.

• f_d has sum of *r*-th power representation with top fan-in $s_0 := \text{poly}(d^{1/\mu}, kn)$ and support-union at most $s_1 := \binom{k+kn/4}{k}$.

- f_d has sum of *r*-th power representation with top fan-in $s_0 := \text{poly}(d^{1/\mu}, kn)$ and support-union at most $s_1 := \binom{k+kn/4}{k}$.
- This means, in notation: $U_{\mathbb{F}}(f_d, r, s_0) \leq s_1$.

- f_d has sum of *r*-th power representation with top fan-in $s_0 := \text{poly}(d^{1/\mu}, kn)$ and support-union at most $s_1 := \binom{k+kn/4}{k}$.
- This means, in notation: $U_{\mathbb{F}}(f_d, r, s_0) \leq s_1$.
- Choose μ appropriately so that $s_0 \leq d^{\delta_1}$ and $s_1 < d/r^{\delta_2}$.

- f_d has sum of *r*-th power representation with top fan-in $s_0 := \text{poly}(d^{1/\mu}, kn)$ and support-union at most $s_1 := \binom{k+kn/4}{k}$.
- This means, in notation: $U_{\mathbb{F}}(f_d, r, s_0) \leq s_1$.
- Choose μ appropriately so that $s_0 \leq d^{\delta_1}$ and $s_1 < d/r^{\delta_2}$.
- This means, $U_{\mathbb{F}}(f_d, r, d^{\delta_1}) < d/r^{\delta_2}$ for infinitely many $d \in I_r$, a contradiction!

- f_d has sum of *r*-th power representation with top fan-in $s_0 := \text{poly}(d^{1/\mu}, kn)$ and support-union at most $s_1 := \binom{k+kn/4}{k}$.
- This means, in notation: $U_{\mathbb{F}}(f_d, r, s_0) \leq s_1$.
- Choose μ appropriately so that $s_0 \leq d^{\delta_1}$ and $s_1 < d/r^{\delta_2}$.
- This means, $U_{\mathbb{F}}(f_d, r, d^{\delta_1}) < d/r^{\delta_2}$ for infinitely many $d \in I_r$, a contradiction!
- *P_{k,n}* is exponentially hard i.e. size(*P_{k,n}*) ≥ *d*^{1/μ} = 2^{Ω(n)}. Thus, it cannot be in VP.

- f_d has sum of *r*-th power representation with top fan-in $s_0 := \text{poly}(d^{1/\mu}, kn)$ and support-union at most $s_1 := \binom{k+kn/4}{k}$.
- This means, in notation: $U_{\mathbb{F}}(f_d, r, s_0) \leq s_1$.
- Choose μ appropriately so that $s_0 \leq d^{\delta_1}$ and $s_1 < d/r^{\delta_2}$.
- This means, $U_{\mathbb{F}}(f_d, r, d^{\delta_1}) < d/r^{\delta_2}$ for infinitely many $d \in I_r$, a contradiction!
- *P_{k,n}* is exponentially hard i.e. size(*P_{k,n}*) ≥ *d*^{1/μ} = 2^{Ω(n)}. Thus, it cannot be in VP.
- Instead of 25-CNF, we could have used 5-CNF, then $s_1 := \binom{k+kn/2}{k}$ which is > *d*. Thus, $r \ge 25$ is *required*!

• We showed that for r = 2, Conjecture C1 implies *matrix rigidity*.

• We showed that for *r* = 2, Conjecture C1 implies *matrix rigidity*. Could we solve the conjecture for special cases like *constant* some of powers?

- We showed that for *r* = 2, Conjecture C1 implies *matrix rigidity*. Could we solve the conjecture for special cases like *constant* some of powers?
- Is C1 true for random f over \mathbb{Q} ?

- We showed that for *r* = 2, Conjecture C1 implies *matrix rigidity*. Could we solve the conjecture for special cases like *constant* some of powers?
- Is C1 true for random f over \mathbb{Q} ? over \mathbb{C} ?

- We showed that for *r* = 2, Conjecture C1 implies *matrix rigidity*. Could we solve the conjecture for special cases like *constant* some of powers?
- Is C1 true for random f over \mathbb{Q} ? over \mathbb{C} ?
- Can we improve the exponent 25?

- We showed that for *r* = 2, Conjecture C1 implies *matrix rigidity*. Could we solve the conjecture for special cases like *constant* some of powers?
- Is C1 true for random f over \mathbb{Q} ? over \mathbb{C} ?
- Can we improve the exponent 25? Very recently, Dutta and Saxena *improved* 25 to 4.

- We showed that for *r* = 2, Conjecture C1 implies *matrix rigidity*. Could we solve the conjecture for special cases like *constant* some of powers?
- Is C1 true for random f over \mathbb{Q} ? over \mathbb{C} ?
- Can we improve the exponent 25? Very recently, Dutta and Saxena *improved* 25 to 4. Can we improve further to 3 (or 2)?

- We showed that for *r* = 2, Conjecture C1 implies *matrix rigidity*. Could we solve the conjecture for special cases like *constant* some of powers?
- Is C1 true for random f over \mathbb{Q} ? over \mathbb{C} ?
- Can we improve the exponent 25? Very recently, Dutta and Saxena *improved* 25 to 4. Can we improve further to 3 (or 2)?
- Can we remove GRH for $(x + 1)^d$?

- We showed that for *r* = 2, Conjecture C1 implies *matrix rigidity*. Could we solve the conjecture for special cases like *constant* some of powers?
- Is C1 true for random f over \mathbb{Q} ? over \mathbb{C} ?
- Can we improve the exponent 25? Very recently, Dutta and Saxena *improved* 25 to 4. Can we improve further to 3 (or 2)?
- Can we remove GRH for $(x + 1)^d$?
- Be ambitious. Prove Conjecture C1!

- We showed that for *r* = 2, Conjecture C1 implies *matrix rigidity*. Could we solve the conjecture for special cases like *constant* some of powers?
- Is C1 true for random f over \mathbb{Q} ? over \mathbb{C} ?
- Can we improve the exponent 25? Very recently, Dutta and Saxena *improved* 25 to 4. Can we improve further to 3 (or 2)?
- Can we remove GRH for $(x + 1)^d$?
- Be ambitious. Prove Conjecture C1!

