
Lower bounds on the sum of 25th-powers of univariates lead

to complete derandomization of PIT

Pranjal Dutta (CMI & IIT Kanpur) Nitin Saxena (IIT Kanpur)
Thomas Thierauf (Aalen University)

SIGTACS Webinar @CSE, IITK



Table of contents

1. Introduction

2. Conjecture C1 and Algebraic Complexity

3. Circuit Normal Form (CNF) and Algebraic Complexity

4. Proof Idea of Main Theorems

5. Conclusion

1



Introduction



Sum of r th-powers

For a univariate polynomial f (x) ∈ F[x] over a field F, and a positive integer
r, we say that f is computed as a sum of r th-powers, if

f =
s∑

i=1
ci · ℓr

i , (1)

for some s ≥ 1, ci ∈ F and ℓi (x) ∈ F[x].

• The sum of r th-powers is a complete model (for large enough F).
Because, for any distinct 𝜆i , there are ci ∈ F such that

f (x) =
r∑

i=0
ci · (f (x) + 𝜆i)r

• For a fixed f , r, s representation Eqn. (1) might not exist.
Eg. (x + 1)r+1 = c1 · ℓr

1 + c2 · ℓr
2 is not possible!

2



Sum of r th-powers

For a univariate polynomial f (x) ∈ F[x] over a field F, and a positive integer
r, we say that f is computed as a sum of r th-powers, if

f =
s∑

i=1
ci · ℓr

i , (1)

for some s ≥ 1, ci ∈ F and ℓi (x) ∈ F[x].

• The sum of r th-powers is a complete model (for large enough F).
Because, for any distinct 𝜆i , there are ci ∈ F such that

f (x) =
r∑

i=0
ci · (f (x) + 𝜆i)r

• For a fixed f , r, s representation Eqn. (1) might not exist.
Eg. (x + 1)r+1 = c1 · ℓr

1 + c2 · ℓr
2 is not possible!

2



Sum of r th-powers

For a univariate polynomial f (x) ∈ F[x] over a field F, and a positive integer
r, we say that f is computed as a sum of r th-powers, if

f =
s∑

i=1
ci · ℓr

i , (1)

for some s ≥ 1, ci ∈ F and ℓi (x) ∈ F[x].

• The sum of r th-powers is a complete model (for large enough F).
Because, for any distinct 𝜆i , there are ci ∈ F such that

f (x) =
r∑

i=0
ci · (f (x) + 𝜆i)r

• For a fixed f , r, s representation Eqn. (1) might not exist.
Eg. (x + 1)r+1 = c1 · ℓr

1 + c2 · ℓr
2 is not possible!

2



Sum of r th-powers

For a univariate polynomial f (x) ∈ F[x] over a field F, and a positive integer
r, we say that f is computed as a sum of r th-powers, if

f =
s∑

i=1
ci · ℓr

i , (1)

for some s ≥ 1, ci ∈ F and ℓi (x) ∈ F[x].

• The sum of r th-powers is a complete model (for large enough F).

Because, for any distinct 𝜆i , there are ci ∈ F such that

f (x) =
r∑

i=0
ci · (f (x) + 𝜆i)r

• For a fixed f , r, s representation Eqn. (1) might not exist.
Eg. (x + 1)r+1 = c1 · ℓr

1 + c2 · ℓr
2 is not possible!

2



Sum of r th-powers

For a univariate polynomial f (x) ∈ F[x] over a field F, and a positive integer
r, we say that f is computed as a sum of r th-powers, if

f =
s∑

i=1
ci · ℓr

i , (1)

for some s ≥ 1, ci ∈ F and ℓi (x) ∈ F[x].

• The sum of r th-powers is a complete model (for large enough F).
Because, for any distinct 𝜆i , there are ci ∈ F such that

f (x) =
r∑

i=0
ci · (f (x) + 𝜆i)r

• For a fixed f , r, s representation Eqn. (1) might not exist.
Eg. (x + 1)r+1 = c1 · ℓr

1 + c2 · ℓr
2 is not possible!

2



Sum of r th-powers

For a univariate polynomial f (x) ∈ F[x] over a field F, and a positive integer
r, we say that f is computed as a sum of r th-powers, if

f =
s∑

i=1
ci · ℓr

i , (1)

for some s ≥ 1, ci ∈ F and ℓi (x) ∈ F[x].

• The sum of r th-powers is a complete model (for large enough F).
Because, for any distinct 𝜆i , there are ci ∈ F such that

f (x) =
r∑

i=0
ci · (f (x) + 𝜆i)r

• For a fixed f , r, s representation Eqn. (1) might not exist.

Eg. (x + 1)r+1 = c1 · ℓr
1 + c2 · ℓr

2 is not possible!

2



Sum of r th-powers

For a univariate polynomial f (x) ∈ F[x] over a field F, and a positive integer
r, we say that f is computed as a sum of r th-powers, if

f =
s∑

i=1
ci · ℓr

i , (1)

for some s ≥ 1, ci ∈ F and ℓi (x) ∈ F[x].

• The sum of r th-powers is a complete model (for large enough F).
Because, for any distinct 𝜆i , there are ci ∈ F such that

f (x) =
r∑

i=0
ci · (f (x) + 𝜆i)r

• For a fixed f , r, s representation Eqn. (1) might not exist.
Eg. (x + 1)r+1 = c1 · ℓr

1 + c2 · ℓr
2 is not possible!

2



New Measure

• A natural complexity measure in (1) is the support-union size, namely
the number of distinct monomials in the representation,

�� ⋃s
i=1 supp(ℓi)

��
where support supp(ℓ) denotes the set of nonzero monomials in the
polynomial ℓ.
Eg. (s = 1) Let (x + 1)d = ℓr

1 where r | d. So, ℓ1 = (x + 1)d/r . Thus,
supp(ℓ1) = {x0, . . . , xd/r } =⇒ |supp(ℓ1) | = d/r + 1.

• The support-union size of f with respect to r and s, denoted UF(f , r, s) is
defined as the minimum support-union size when f is written in the
form (1), and ∞, if no such representation exists.

• Observe: |supp(ℓr ) | ≤ |supp(ℓ) |r for r ≥ 1. Thus, for all f , r, s:

UF (f , r, s) ≥ Ω( |supp(f ) |1/r )

3



New Measure

• A natural complexity measure in (1) is the support-union size, namely
the number of distinct monomials in the representation,

�� ⋃s
i=1 supp(ℓi)

��
where support supp(ℓ) denotes the set of nonzero monomials in the
polynomial ℓ.

Eg. (s = 1) Let (x + 1)d = ℓr
1 where r | d. So, ℓ1 = (x + 1)d/r . Thus,

supp(ℓ1) = {x0, . . . , xd/r } =⇒ |supp(ℓ1) | = d/r + 1.

• The support-union size of f with respect to r and s, denoted UF(f , r, s) is
defined as the minimum support-union size when f is written in the
form (1), and ∞, if no such representation exists.

• Observe: |supp(ℓr ) | ≤ |supp(ℓ) |r for r ≥ 1. Thus, for all f , r, s:

UF (f , r, s) ≥ Ω( |supp(f ) |1/r )

3



New Measure

• A natural complexity measure in (1) is the support-union size, namely
the number of distinct monomials in the representation,

�� ⋃s
i=1 supp(ℓi)

��
where support supp(ℓ) denotes the set of nonzero monomials in the
polynomial ℓ.
Eg. (s = 1) Let (x + 1)d = ℓr

1 where r | d. So, ℓ1 = (x + 1)d/r . Thus,
supp(ℓ1) = {x0, . . . , xd/r } =⇒ |supp(ℓ1) | = d/r + 1.

• The support-union size of f with respect to r and s, denoted UF(f , r, s) is
defined as the minimum support-union size when f is written in the
form (1), and ∞, if no such representation exists.

• Observe: |supp(ℓr ) | ≤ |supp(ℓ) |r for r ≥ 1. Thus, for all f , r, s:

UF (f , r, s) ≥ Ω( |supp(f ) |1/r )

3



New Measure

• A natural complexity measure in (1) is the support-union size, namely
the number of distinct monomials in the representation,

�� ⋃s
i=1 supp(ℓi)

��
where support supp(ℓ) denotes the set of nonzero monomials in the
polynomial ℓ.
Eg. (s = 1) Let (x + 1)d = ℓr

1 where r | d. So, ℓ1 = (x + 1)d/r . Thus,
supp(ℓ1) = {x0, . . . , xd/r } =⇒ |supp(ℓ1) | = d/r + 1.

• The support-union size of f with respect to r and s, denoted UF (f , r, s) is
defined as the minimum support-union size when f is written in the
form (1), and ∞, if no such representation exists.

• Observe: |supp(ℓr ) | ≤ |supp(ℓ) |r for r ≥ 1. Thus, for all f , r, s:

UF (f , r, s) ≥ Ω( |supp(f ) |1/r )

3



New Measure

• A natural complexity measure in (1) is the support-union size, namely
the number of distinct monomials in the representation,

�� ⋃s
i=1 supp(ℓi)

��
where support supp(ℓ) denotes the set of nonzero monomials in the
polynomial ℓ.
Eg. (s = 1) Let (x + 1)d = ℓr

1 where r | d. So, ℓ1 = (x + 1)d/r . Thus,
supp(ℓ1) = {x0, . . . , xd/r } =⇒ |supp(ℓ1) | = d/r + 1.

• The support-union size of f with respect to r and s, denoted UF (f , r, s) is
defined as the minimum support-union size when f is written in the
form (1), and ∞, if no such representation exists.

• Observe: |supp(ℓr ) | ≤ |supp(ℓ) |r for r ≥ 1.

Thus, for all f , r, s:

UF (f , r, s) ≥ Ω( |supp(f ) |1/r )

3



New Measure

• A natural complexity measure in (1) is the support-union size, namely
the number of distinct monomials in the representation,

�� ⋃s
i=1 supp(ℓi)

��
where support supp(ℓ) denotes the set of nonzero monomials in the
polynomial ℓ.
Eg. (s = 1) Let (x + 1)d = ℓr

1 where r | d. So, ℓ1 = (x + 1)d/r . Thus,
supp(ℓ1) = {x0, . . . , xd/r } =⇒ |supp(ℓ1) | = d/r + 1.

• The support-union size of f with respect to r and s, denoted UF (f , r, s) is
defined as the minimum support-union size when f is written in the
form (1), and ∞, if no such representation exists.

• Observe: |supp(ℓr ) | ≤ |supp(ℓ) |r for r ≥ 1. Thus, for all f , r, s:

UF (f , r, s) ≥ Ω( |supp(f ) |1/r )

3



Understanding U ((x + 1)d , r, ·)

Fix the notations: fd (x) := (x + 1)d and F = Q.

Question: What can we say about UF (fd , r, ·)? Here are few observations:

• For s = 1, if r | d, then we have UF (fd , r, 1) = d/r + 1 .

• For s = 2, we show that UF (fd , r, 2) ≥ d/r + 1 .

• (Small s). For s = r + 1 and any d, we show that

UF (fd , r, r + 1) ≤ d/r + r .

• (Large s). For s ≥ c · (d + 1) for any c > r, we show that

UF (fd , r, s) ≤ O(d1/r ) .

Thus, for large s, we get UF (fd , r, s) = Θ(d1/r ), which resolves this case.

4



Understanding U ((x + 1)d , r, ·)

Fix the notations: fd (x) := (x + 1)d and F = Q.

Question: What can we say about UF (fd , r, ·)? Here are few observations:

• For s = 1, if r | d, then we have UF (fd , r, 1) = d/r + 1 .

• For s = 2, we show that UF (fd , r, 2) ≥ d/r + 1 .

• (Small s). For s = r + 1 and any d, we show that

UF (fd , r, r + 1) ≤ d/r + r .

• (Large s). For s ≥ c · (d + 1) for any c > r, we show that

UF (fd , r, s) ≤ O(d1/r ) .

Thus, for large s, we get UF (fd , r, s) = Θ(d1/r ), which resolves this case.

4



Understanding U ((x + 1)d , r, ·)

Fix the notations: fd (x) := (x + 1)d and F = Q.

Question: What can we say about UF (fd , r, ·)?

Here are few observations:

• For s = 1, if r | d, then we have UF (fd , r, 1) = d/r + 1 .

• For s = 2, we show that UF (fd , r, 2) ≥ d/r + 1 .

• (Small s). For s = r + 1 and any d, we show that

UF (fd , r, r + 1) ≤ d/r + r .

• (Large s). For s ≥ c · (d + 1) for any c > r, we show that

UF (fd , r, s) ≤ O(d1/r ) .

Thus, for large s, we get UF (fd , r, s) = Θ(d1/r ), which resolves this case.

4



Understanding U ((x + 1)d , r, ·)

Fix the notations: fd (x) := (x + 1)d and F = Q.

Question: What can we say about UF (fd , r, ·)? Here are few observations:

• For s = 1, if r | d, then we have UF (fd , r, 1) = d/r + 1 .

• For s = 2, we show that UF (fd , r, 2) ≥ d/r + 1 .

• (Small s). For s = r + 1 and any d, we show that

UF (fd , r, r + 1) ≤ d/r + r .

• (Large s). For s ≥ c · (d + 1) for any c > r, we show that

UF (fd , r, s) ≤ O(d1/r ) .

Thus, for large s, we get UF (fd , r, s) = Θ(d1/r ), which resolves this case.

4



Understanding U ((x + 1)d , r, ·)

Fix the notations: fd (x) := (x + 1)d and F = Q.

Question: What can we say about UF (fd , r, ·)? Here are few observations:

• For s = 1, if r | d, then we have UF (fd , r, 1) = d/r + 1 .

• For s = 2, we show that UF (fd , r, 2) ≥ d/r + 1 .

• (Small s). For s = r + 1 and any d, we show that

UF (fd , r, r + 1) ≤ d/r + r .

• (Large s). For s ≥ c · (d + 1) for any c > r, we show that

UF (fd , r, s) ≤ O(d1/r ) .

Thus, for large s, we get UF (fd , r, s) = Θ(d1/r ), which resolves this case.

4



Understanding U ((x + 1)d , r, ·)

Fix the notations: fd (x) := (x + 1)d and F = Q.

Question: What can we say about UF (fd , r, ·)? Here are few observations:

• For s = 1, if r | d, then we have UF (fd , r, 1) = d/r + 1 .

• For s = 2, we show that UF (fd , r, 2) ≥ d/r + 1 .

• (Small s). For s = r + 1 and any d, we show that

UF (fd , r, r + 1) ≤ d/r + r .

• (Large s). For s ≥ c · (d + 1) for any c > r, we show that

UF (fd , r, s) ≤ O(d1/r ) .

Thus, for large s, we get UF (fd , r, s) = Θ(d1/r ), which resolves this case.

4



Understanding U ((x + 1)d , r, ·)

Fix the notations: fd (x) := (x + 1)d and F = Q.

Question: What can we say about UF (fd , r, ·)? Here are few observations:

• For s = 1, if r | d, then we have UF (fd , r, 1) = d/r + 1 .

• For s = 2, we show that UF (fd , r, 2) ≥ d/r + 1 .

• (Small s). For s = r + 1 and any d, we show that

UF (fd , r, r + 1) ≤ d/r + r .

• (Large s). For s ≥ c · (d + 1) for any c > r, we show that

UF (fd , r, s) ≤ O(d1/r ) .

Thus, for large s, we get UF (fd , r, s) = Θ(d1/r ), which resolves this case.

4



Understanding U ((x + 1)d , r, ·)

Fix the notations: fd (x) := (x + 1)d and F = Q.

Question: What can we say about UF (fd , r, ·)? Here are few observations:

• For s = 1, if r | d, then we have UF (fd , r, 1) = d/r + 1 .

• For s = 2, we show that UF (fd , r, 2) ≥ d/r + 1 .

• (Small s). For s = r + 1 and any d, we show that

UF (fd , r, r + 1) ≤ d/r + r .

• (Large s). For s ≥ c · (d + 1) for any c > r, we show that

UF (fd , r, s) ≤ O(d1/r ) .

Thus, for large s, we get UF (fd , r, s) = Θ(d1/r ), which resolves this case.

4



Support-union Conjecture

5



Support-union Conjecture

For technical reasons, we will restrict d to the domain

Ir := { rm − 1 | m ∈ N } .

5



Support-union Conjecture

For technical reasons, we will restrict d to the domain

Ir := { rm − 1 | m ∈ N } .

Motivated from the examples above, we could conjecture the following.

5



Support-union Conjecture

For technical reasons, we will restrict d to the domain

Ir := { rm − 1 | m ∈ N } .

Motivated from the examples above, we could conjecture the following.

Possible Conjecture 1
For s ≤ d and a constant prime-power r,

UF (fd , r, s) ≥ d/r

for all large enough d ∈ Ir .

5



Support-union Conjecture

For technical reasons, we will restrict d to the domain

Ir := { rm − 1 | m ∈ N } .

Motivated from the examples above, we could conjecture the following.

Possible Conjecture 2
For positive constant 𝛿1 ≤ 1 and a constant prime-power r,

UF (fd , r, d 𝛿1 ) ≥ d/r

for all large enough d ∈ Ir .

5



Support-union Conjecture

For technical reasons, we will restrict d to the domain

Ir := { rm − 1 | m ∈ N } .

Motivated from the examples above, we conjecture the following.

Support-union Conjecture (C1)
For positive constants 𝛿1 ≤ 1, 𝛿2 ≥ 1 and a constant prime-power r,

UF (fd , r, d 𝛿1 ) ≥ d/r 𝛿2

for all large enough d ∈ Ir .

5



Support-union Conjecture

For technical reasons, we will restrict d to the domain

Ir := { rm − 1 | m ∈ N } .

Motivated from the examples above, we conjecture the following.

Support-union Conjecture (C1)
For positive constants 𝛿1 ≤ 1, 𝛿2 ≥ 1 and a constant prime-power r,

UF (fd , r, d 𝛿1 ) ≥ d/r 𝛿2

for all large enough d ∈ Ir .

There are other intricate polynomial families for which we suspect that C1 is
true; for e.g.

∏
i∈[d ] (x − i) ,

∑d
i=0 2i2 x i .

5



Support-union Conjecture

For technical reasons, we will restrict d to the domain

Ir := { rm − 1 | m ∈ N } .

Motivated from the examples above, we conjecture the following.

Support-union Conjecture (C1)
For positive constants 𝛿1 ≤ 1, 𝛿2 ≥ 1 and a constant prime-power r,

UF (fd , r, d 𝛿1 ) ≥ d/r 𝛿2

for all large enough d ∈ Ir .

There are other intricate polynomial families for which we suspect that C1 is
true; for e.g.

∏
i∈[d ] (x − i) ,

∑d
i=0 2i2 x i .

Reason to choose fd is that it is a very simple polynomial.

5



Conjecture C1 over Z (Integer ring)

C1 over Z
Conjecture C1 holds true over Z.

Proof.
If r = pℓ for some prime p and ℓ ∈ N, then for d ∈ Ir :(

d
i

)
≡ ±1 mod p =⇒ |supp(fd mod p) | = d + 1 .

Observe: ℓi (x)r ≡ ℓi (xr ) mod p and
�� ⋃

i supp(ℓi (x))
�� = �� ⋃

i supp(ℓi (xr ))
��.

fd =
∑

ci · ℓr
i =⇒ fd mod p =

∑
ci · ℓi (xr ) mod p

=⇒
��⋃ supp(ℓi)

�� ≥ d + 1

=⇒ UZ (fd , r, ·) ≥ d + 1 > d/r 𝛿2

□

6



Conjecture C1 over Z (Integer ring)

C1 over Z
Conjecture C1 holds true over Z.

Proof.
If r = pℓ for some prime p and ℓ ∈ N, then for d ∈ Ir :(

d
i

)
≡ ±1 mod p =⇒ |supp(fd mod p) | = d + 1 .

Observe: ℓi (x)r ≡ ℓi (xr ) mod p and
�� ⋃

i supp(ℓi (x))
�� = �� ⋃

i supp(ℓi (xr ))
��.

fd =
∑

ci · ℓr
i =⇒ fd mod p =

∑
ci · ℓi (xr ) mod p

=⇒
��⋃ supp(ℓi)

�� ≥ d + 1

=⇒ UZ (fd , r, ·) ≥ d + 1 > d/r 𝛿2

□

6



Conjecture C1 over Z (Integer ring)

C1 over Z
Conjecture C1 holds true over Z.

Proof.
If r = pℓ for some prime p and ℓ ∈ N, then for d ∈ Ir :(

d
i

)
≡ ±1 mod p =⇒ |supp(fd mod p) | = d + 1 .

Observe: ℓi (x)r ≡ ℓi (xr ) mod p and
�� ⋃

i supp(ℓi (x))
�� = �� ⋃

i supp(ℓi (xr ))
��.

fd =
∑

ci · ℓr
i =⇒ fd mod p =

∑
ci · ℓi (xr ) mod p

=⇒
��⋃ supp(ℓi)

�� ≥ d + 1

=⇒ UZ (fd , r, ·) ≥ d + 1 > d/r 𝛿2

□

6



Conjecture C1 over Z (Integer ring)

C1 over Z
Conjecture C1 holds true over Z.

Proof.
If r = pℓ for some prime p and ℓ ∈ N, then for d ∈ Ir :(

d
i

)
≡ ±1 mod p =⇒ |supp(fd mod p) | = d + 1 .

Observe: ℓi (x)r ≡ ℓi (xr ) mod p and
�� ⋃

i supp(ℓi (x))
�� = �� ⋃

i supp(ℓi (xr ))
��.

fd =
∑

ci · ℓr
i =⇒ fd mod p =

∑
ci · ℓi (xr ) mod p

=⇒
��⋃ supp(ℓi)

�� ≥ d + 1

=⇒ UZ (fd , r, ·) ≥ d + 1 > d/r 𝛿2

□

6



Conjecture C1 over Z (Integer ring)

C1 over Z
Conjecture C1 holds true over Z.

Proof.
If r = pℓ for some prime p and ℓ ∈ N, then for d ∈ Ir :(

d
i

)
≡ ±1 mod p =⇒ |supp(fd mod p) | = d + 1 .

Observe: ℓi (x)r ≡ ℓi (xr ) mod p and
�� ⋃

i supp(ℓi (x))
�� = �� ⋃

i supp(ℓi (xr ))
��.

fd =
∑

ci · ℓr
i

=⇒ fd mod p =
∑

ci · ℓi (xr ) mod p

=⇒
��⋃ supp(ℓi)

�� ≥ d + 1

=⇒ UZ (fd , r, ·) ≥ d + 1 > d/r 𝛿2

□

6



Conjecture C1 over Z (Integer ring)

C1 over Z
Conjecture C1 holds true over Z.

Proof.
If r = pℓ for some prime p and ℓ ∈ N, then for d ∈ Ir :(

d
i

)
≡ ±1 mod p =⇒ |supp(fd mod p) | = d + 1 .

Observe: ℓi (x)r ≡ ℓi (xr ) mod p and
�� ⋃

i supp(ℓi (x))
�� = �� ⋃

i supp(ℓi (xr ))
��.

fd =
∑

ci · ℓr
i =⇒ fd mod p =

∑
ci · ℓi (xr ) mod p

=⇒
��⋃ supp(ℓi)

�� ≥ d + 1

=⇒ UZ (fd , r, ·) ≥ d + 1 > d/r 𝛿2

□

6



Conjecture C1 over Z (Integer ring)

C1 over Z
Conjecture C1 holds true over Z.

Proof.
If r = pℓ for some prime p and ℓ ∈ N, then for d ∈ Ir :(

d
i

)
≡ ±1 mod p =⇒ |supp(fd mod p) | = d + 1 .

Observe: ℓi (x)r ≡ ℓi (xr ) mod p and
�� ⋃

i supp(ℓi (x))
�� = �� ⋃

i supp(ℓi (xr ))
��.

fd =
∑

ci · ℓr
i =⇒ fd mod p =

∑
ci · ℓi (xr ) mod p

=⇒
��⋃ supp(ℓi)

�� ≥ d + 1

=⇒ UZ (fd , r, ·) ≥ d + 1 > d/r 𝛿2

□

6



Conjecture C1 over Z (Integer ring)

C1 over Z
Conjecture C1 holds true over Z.

Proof.
If r = pℓ for some prime p and ℓ ∈ N, then for d ∈ Ir :(

d
i

)
≡ ±1 mod p =⇒ |supp(fd mod p) | = d + 1 .

Observe: ℓi (x)r ≡ ℓi (xr ) mod p and
�� ⋃

i supp(ℓi (x))
�� = �� ⋃

i supp(ℓi (xr ))
��.

fd =
∑

ci · ℓr
i =⇒ fd mod p =

∑
ci · ℓi (xr ) mod p

=⇒
��⋃ supp(ℓi)

�� ≥ d + 1

=⇒ UZ (fd , r, ·) ≥ d + 1 > d/r 𝛿2

□

6



Conjecture C1 and Algebraic
Complexity



Arithmetic Circuits

x1 x2 x3 1

+ + + + + +

× × ×

+

f (x1, x2, x3)

7



Arithmetic Circuits

x1 x2 x3 1

+ + + + + +

× × ×

+

f (x)

7



Arithmetic Circuits

x1 x2 x3 1

+ + + + + +

× × ×

+

f (x)

Size = number of nodes + edges

7



Arithmetic Circuits

x1 x2 x3 1

+ + + + + +

× × ×

+

f (x)

Depth

7



Two Important Questions

• Valiant’s Hypothesis: Prove that symbolic permn requires n𝜔 (1) -size
circuit.

8



VP vs. VNP

• Valiant’s Hypothesis: Prove that symbolic permn requires n𝜔 (1) -size
circuit. An equivalent version is: Prove VP ≠ VNP .

8



VP vs. VNP

• Valiant’s Hypothesis: Prove that symbolic permn requires n𝜔 (1) -size
circuit. An equivalent version is: Prove VP ≠ VNP .

• VP : A family {fn}n ∈ VP (over F) if fn is a poly(n)-variate polynomial,
of degree poly(n) over F, computed by poly(n)-size circuit.

8



VP vs. VNP

• Valiant’s Hypothesis: Prove that symbolic permn requires n𝜔 (1) -size
circuit. An equivalent version is: Prove VP ≠ VNP .

• VP : A family {fn}n ∈ VP (over F) if fn is a poly(n)-variate polynomial,
of degree poly(n) over F, computed by poly(n)-size circuit.

• VNP : A family {fn}n ∈ VNP (over F) if ∃{gn}n ∈ VP & t (n) = poly(n):

fn (x) =
∑

w∈{0,1}t (n)

gn (x,w) .

8



VP vs. VNP

• Valiant’s Hypothesis: Prove that symbolic permn requires n𝜔 (1) -size
circuit. An equivalent version is: Prove VP ≠ VNP .

• VP : A family {fn}n ∈ VP (over F) if fn is a poly(n)-variate polynomial,
of degree poly(n) over F, computed by poly(n)-size circuit.

• VNP : A family {fn}n ∈ VNP (over F) if ∃{gn}n ∈ VP & t (n) = poly(n):

fn (x) =
∑

w∈{0,1}t (n)

gn (x,w) .

• {fn}n ∈ VNP =⇒ fn is explicit.

8



VP vs. VNP

• Valiant’s Hypothesis: Prove that symbolic permn requires n𝜔 (1) -size
circuit. An equivalent version is: Prove VP ≠ VNP .

• VP : A family {fn}n ∈ VP (over F) if fn is a poly(n)-variate polynomial,
of degree poly(n) over F, computed by poly(n)-size circuit.

• VNP : A family {fn}n ∈ VNP (over F) if ∃{gn}n ∈ VP & t (n) = poly(n):

fn (x) =
∑

w∈{0,1}t (n)

gn (x,w) .

• {fn}n ∈ VNP =⇒ fn is explicit.

• Sufficient explicitness (Valiant’s Criterion):

8



VP vs. VNP

• Valiant’s Hypothesis: Prove that symbolic permn requires n𝜔 (1) -size
circuit. An equivalent version is: Prove VP ≠ VNP .

• VP : A family {fn}n ∈ VP (over F) if fn is a poly(n)-variate polynomial,
of degree poly(n) over F, computed by poly(n)-size circuit.

• VNP : A family {fn}n ∈ VNP (over F) if ∃{gn}n ∈ VP & t (n) = poly(n):

fn (x) =
∑

w∈{0,1}t (n)

gn (x,w) .

• {fn}n ∈ VNP =⇒ fn is explicit.

• Sufficient explicitness (Valiant’s Criterion): Suppose 𝜙 : {0, 1}∗ → N
is a function in the class P. Then, the family {fn}n ∈ VNP if

fn (x) =
∑

e∈{0,1}n

𝜙(e) xe .

8



VP vs. VNP

• Valiant’s Hypothesis: Prove that symbolic permn requires n𝜔 (1) -size
circuit. An equivalent version is: Prove VP ≠ VNP .

• VP : A family {fn}n ∈ VP (over F) if fn is a poly(n)-variate polynomial,
of degree poly(n) over F, computed by poly(n)-size circuit.

• VNP : A family {fn}n ∈ VNP (over F) if ∃{gn}n ∈ VP & t (n) = poly(n):

fn (x) =
∑

w∈{0,1}t (n)

gn (x,w) .

• {fn}n ∈ VNP =⇒ fn is explicit.

• Sufficient explicitness (Valiant’s Criterion): Suppose 𝜙 : {0, 1}∗ → N
is a function in the class P/poly. Then, the family {fn}n ∈ VNP if

fn (x) =
∑

e∈{0,1}n

𝜙(e) xe .

8



VP vs. VNP

• Valiant’s Hypothesis: Prove that symbolic permn requires n𝜔 (1) -size
circuit. An equivalent version is: Prove VP ≠ VNP .

• VP : A family {fn}n ∈ VP (over F) if fn is a poly(n)-variate polynomial,
of degree poly(n) over F, computed by poly(n)-size circuit.

• VNP : A family {fn}n ∈ VNP (over F) if ∃{gn}n ∈ VP & t (n) = poly(n):

fn (x) =
∑

w∈{0,1}t (n)

gn (x,w) .

• {fn}n ∈ VNP =⇒ fn is explicit.

• Sufficient explicitness (Valiant’s Criterion): Suppose 𝜙 : [0, c]∗ → N
is a function in the class P/poly. Then, the family {fn}n ∈ VNP if

fn (x) =
∑

e∈[0,c]n

𝜙(e) xe .

8



Polynomial Identity Testing

• Polynomial Identity Testing (PIT): Given a circuit C, test whether C
computes the zero polynomial (deterministically).

• Blackbox-PIT asks for an algorithm to test the zeroness of a given
algebraic circuit via mere query access.

• Hitting sets: Find a set of points H such that any “small” circuit C that is
computing a nonzero polynomial must satisfy C(a) ≠ 0 for some a ∈ H.

Polynomial Identity Lemma (Ore, Demillo-Lipton, Schwartz, Zippel)
If P(x) is a nonzero polynomial of degree d, and S ⊆ F of size at least
d + 1, then P(a) ≠ 0 for some a ∈ Sn.

This above lemma puts PIT ∈ RP.

9



Polynomial Identity Testing

• Polynomial Identity Testing (PIT): Given a circuit C, test whether C
computes the zero polynomial (deterministically).

• Blackbox-PIT asks for an algorithm to test the zeroness of a given
algebraic circuit via mere query access.

• Hitting sets: Find a set of points H such that any “small” circuit C that is
computing a nonzero polynomial must satisfy C(a) ≠ 0 for some a ∈ H.

Polynomial Identity Lemma (Ore, Demillo-Lipton, Schwartz, Zippel)
If P(x) is a nonzero polynomial of degree d, and S ⊆ F of size at least
d + 1, then P(a) ≠ 0 for some a ∈ Sn.

This above lemma puts PIT ∈ RP.

9



Polynomial Identity Testing

• Polynomial Identity Testing (PIT): Given a circuit C, test whether C
computes the zero polynomial (deterministically).

• Blackbox-PIT asks for an algorithm to test the zeroness of a given
algebraic circuit via mere query access.

• Hitting sets: Find a set of points H such that any “small” circuit C that is
computing a nonzero polynomial must satisfy C(a) ≠ 0 for some a ∈ H.

Polynomial Identity Lemma (Ore, Demillo-Lipton, Schwartz, Zippel)
If P(x) is a nonzero polynomial of degree d, and S ⊆ F of size at least
d + 1, then P(a) ≠ 0 for some a ∈ Sn.

This above lemma puts PIT ∈ RP.

9



Polynomial Identity Testing

• Polynomial Identity Testing (PIT): Given a circuit C, test whether C
computes the zero polynomial (deterministically).

• Blackbox-PIT asks for an algorithm to test the zeroness of a given
algebraic circuit via mere query access.

• Hitting sets: Find a set of points H such that any “small” circuit C that is
computing a nonzero polynomial must satisfy C(a) ≠ 0 for some a ∈ H.

Polynomial Identity Lemma (Ore, Demillo-Lipton, Schwartz, Zippel)
If P(x) is a nonzero polynomial of degree d, and S ⊆ F of size at least
d + 1, then P(a) ≠ 0 for some a ∈ Sn.

This above lemma puts PIT ∈ RP.

9



Polynomial Identity Testing

• Polynomial Identity Testing (PIT): Given a circuit C, test whether C
computes the zero polynomial (deterministically).

• Blackbox-PIT asks for an algorithm to test the zeroness of a given
algebraic circuit via mere query access.

• Hitting sets: Find a set of points H such that any “small” circuit C that is
computing a nonzero polynomial must satisfy C(a) ≠ 0 for some a ∈ H.

Polynomial Identity Lemma (Ore, Demillo-Lipton, Schwartz, Zippel)
If P(x) is a nonzero polynomial of degree d, and S ⊆ F of size at least
d + 1, then P(a) ≠ 0 for some a ∈ Sn.

This above lemma puts PIT ∈ RP.

9



Polynomial Identity Testing

• Polynomial Identity Testing (PIT): Given a circuit C, test whether C
computes the zero polynomial (deterministically).

• Blackbox-PIT asks for an algorithm to test the zeroness of a given
algebraic circuit via mere query access.

• Hitting sets: Find a set of points H such that any “small” circuit C that is
computing a nonzero polynomial must satisfy C(a) ≠ 0 for some a ∈ H.

Polynomial Identity Lemma (Ore, Demillo-Lipton, Schwartz, Zippel)
If P(x) is a nonzero polynomial of degree d, and S ⊆ F of size at least
d + 1, then P(a) ≠ 0 for some a ∈ Sn.

This above lemma puts PIT ∈ RP.

9



VP ≠ VNP & Efficient PIT

VP ≠ VNP Explicit Hitting Sets

10



VP ≠ VNP & Efficient PIT

VP ≠ VNP Explicit Hitting Sets

KI03, AGS19

10



VP ≠ VNP & Efficient PIT

VP ≠ VNP Explicit Hitting Sets

KI03, AGS19

KI03

10



VP ≠ VNP & Efficient PIT

VP ≠ VNP Explicit Hitting Sets

constant (≥ 4)-variate explicit hard polynomial

GKSS19

KI03, AGS19

KI03

10



VP ≠ VNP & Efficient PIT

VP ≠ VNP Explicit Hitting Sets

constant (≥ 4)-variate explicit hard polynomial

f (x) = ∑s
i=1 Qei

i , deg(Qi) ≤ t and ei = 𝜔(1) =⇒ s ≥ (d/t)Ω(1)

GKSS19

KI03, AGS19

KI03

10



VP ≠ VNP & Efficient PIT

VP ≠ VNP Explicit Hitting Sets

constant (≥ 4)-variate explicit hard polynomial

f (x) = ∑s
i=1 Qei

i , deg(Qi) ≤ t and ei = 𝜔(1) =⇒ s ≥ (d/t)Ω(1)

GKSS19
AV08, Koi12

KI03, AGS19

KI03

10



Connecting Conjecture C1 to Algebraic Complexity

VP ≠ VNP Explicit Hitting Sets

constant (≥ 4)-variate explicit hard polynomial

f (x) = ∑s
i=1 Qei

i , deg(Qi) ≤ t and ei = 𝜔(1) =⇒ s ≥ (d/t)Ω(1)

GKSS19
AV08, Koi12

Conjecture C1 holds for an r ≥ 25

KI03, AGS19

KI03

10



Connecting Conjecture C1 to Algebraic Complexity

VP ≠ VNP Explicit Hitting Sets

constant (≥ 4)-variate explicit hard polynomial

f (x) = ∑s
i=1 Qei

i , deg(Qi) ≤ t and ei = 𝜔(1) =⇒ s ≥ (d/t)Ω(1)

GKSS19
AV08, Koi12

Conjecture C1 holds for an r ≥ 25

KI03, AGS19

KI03

10



Connecting Conjecture C1 to Algebraic Complexity

VP ≠ VNP Explicit Hitting Sets

constant (≥ 4)-variate explicit hard polynomial

f (x) = ∑s
i=1 Qei

i , deg(Qi) ≤ t and ei = 𝜔(1) =⇒ s ≥ (d/t)Ω(1)

GKSS19
AV08, Koi12

Conjecture C1 holds for an r ≥ 25

Assume GRH KI03, AGS19

KI03

10



Connecting Conjecture C1 to Algebraic Complexity

VP ≠ VNP Explicit Hitting Sets

constant (≥ 4)-variate explicit hard polynomial

f (x) = ∑s
i=1 Qei

i , deg(Qi) ≤ t and ei = 𝜔(1) =⇒ s ≥ (d/t)Ω(1)

GKSS19
AV08, Koi12

Conjecture C1 holds for an r ≥ 25

Assume GRH KI03, AGS19

KI03

10



Conjecture C1 and Algebraic Complexity

Recall Conjecture C1.

11



Conjecture C1 and Algebraic Complexity

C1 : (x + 1)d =
d 𝛿1∑
i=1

ℓr
i =⇒

��⋃
i

supp (ℓi)
�� ≥ d/r 𝛿2 = Ω(d) .

11



Conjecture C1 and Algebraic Complexity

C1 : (x + 1)d =
d 𝛿1∑
i=1

ℓr
i =⇒

��⋃
i

supp (ℓi)
�� ≥ d/r 𝛿2 = Ω(d) .

Theorem 1: Conjecture C1 to PIT
If Conjecture C1 holds for an r ≥ 25, then blackbox-PIT ∈ P.

11



Conjecture C1 and Algebraic Complexity

C1 : (x + 1)d =
d 𝛿1∑
i=1

ℓr
i =⇒

��⋃
i

supp (ℓi)
�� ≥ d/r 𝛿2 = Ω(d) .

Theorem 1: Conjecture C1 to PIT
If Conjecture C1 holds for an r ≥ 25, then blackbox-PIT ∈ P.

Theorem 2: Conjecture C1 to VP ≠ VNP
Assume GRH, and Conjecture C1 holds for an r ≥ 25, then VP ≠ VNP.

11



Conjecture C1 and Algebraic Complexity

Theorem 1: Conjecture C1 to PIT
If Conjecture C1 holds for an r ≥ 25, then blackbox-PIT ∈ P.

Theorem 2: Conjecture C1 to VP ≠ VNP
Assume GRH, and Conjecture C1 holds for an r ≥ 25, then VP ≠ VNP.

Theorem 2 is reminiscent to the following:

11



Conjecture C1 and Algebraic Complexity

Theorem 1: Conjecture C1 to PIT
If Conjecture C1 holds for an r ≥ 25, then blackbox-PIT ∈ P.

Theorem 2: Conjecture C1 to VP ≠ VNP
Assume GRH, and Conjecture C1 holds for an r ≥ 25, then VP ≠ VNP.

Theorem 2 is reminiscent to the following:

Strong lower bound on sum-of-squares in non-commutative settings
implies Permanent is hard [HWY11].

11



More on Conjecture C1 and Theorem 1-2

• There are other candidate polynomials for C1, for eg.
∏

i∈[d ] (x − i),∑d
i=0 2i2 x i . C1 holds for them implies Theorem 1 & 2.

• C1 holds for
∑d

i=0 2i2 x i implies VP ≠ VNP without GRH!

• It is enough to consider poly-degree restriction on ℓi . In fact, for
Theorem 1, we can assume deg(ℓi) = O(d) while for Theorem 2, we
can assume deg(ℓi) = O(d log d).

• There is a relaxed version of C1 where, instead of the measure�� ⋃ supp(ℓi)
��, we look at

∑
i |supp(ℓi) |.

• We call it SF (f , r, s). Trivially, UF (f , r, s) ≤ SF (f , r, s).

• We could similarly conjecture (C2) that SF (fd , r, ·) is large.

• C2 and GRH implies VP ≠ VNP; it’s not clear whether it implies PIT ∈ P.

12



More on Conjecture C1 and Theorem 1-2

• There are other candidate polynomials for C1, for eg.
∏

i∈[d ] (x − i),∑d
i=0 2i2 x i . C1 holds for them implies Theorem 1 & 2.

• C1 holds for
∑d

i=0 2i2 x i implies VP ≠ VNP without GRH!

• It is enough to consider poly-degree restriction on ℓi . In fact, for
Theorem 1, we can assume deg(ℓi) = O(d) while for Theorem 2, we
can assume deg(ℓi) = O(d log d).

• There is a relaxed version of C1 where, instead of the measure�� ⋃ supp(ℓi)
��, we look at

∑
i |supp(ℓi) |.

• We call it SF (f , r, s). Trivially, UF (f , r, s) ≤ SF (f , r, s).

• We could similarly conjecture (C2) that SF (fd , r, ·) is large.

• C2 and GRH implies VP ≠ VNP; it’s not clear whether it implies PIT ∈ P.

12



More on Conjecture C1 and Theorem 1-2

• There are other candidate polynomials for C1, for eg.
∏

i∈[d ] (x − i),∑d
i=0 2i2 x i . C1 holds for them implies Theorem 1 & 2.

• C1 holds for
∑d

i=0 2i2 x i implies VP ≠ VNP without GRH!

• It is enough to consider poly-degree restriction on ℓi . In fact, for
Theorem 1, we can assume deg(ℓi) = O(d) while for Theorem 2, we
can assume deg(ℓi) = O(d log d).

• There is a relaxed version of C1 where, instead of the measure�� ⋃ supp(ℓi)
��, we look at

∑
i |supp(ℓi) |.

• We call it SF (f , r, s). Trivially, UF (f , r, s) ≤ SF (f , r, s).

• We could similarly conjecture (C2) that SF (fd , r, ·) is large.

• C2 and GRH implies VP ≠ VNP; it’s not clear whether it implies PIT ∈ P.

12



More on Conjecture C1 and Theorem 1-2

• There are other candidate polynomials for C1, for eg.
∏

i∈[d ] (x − i),∑d
i=0 2i2 x i . C1 holds for them implies Theorem 1 & 2.

• C1 holds for
∑d

i=0 2i2 x i implies VP ≠ VNP without GRH!

• It is enough to consider poly-degree restriction on ℓi . In fact, for
Theorem 1, we can assume deg(ℓi) = O(d) while for Theorem 2, we
can assume deg(ℓi) = O(d log d).

• There is a relaxed version of C1 where, instead of the measure�� ⋃ supp(ℓi)
��, we look at

∑
i |supp(ℓi) |.

• We call it SF (f , r, s). Trivially, UF (f , r, s) ≤ SF (f , r, s).

• We could similarly conjecture (C2) that SF (fd , r, ·) is large.

• C2 and GRH implies VP ≠ VNP; it’s not clear whether it implies PIT ∈ P.

12



More on Conjecture C1 and Theorem 1-2

• There are other candidate polynomials for C1, for eg.
∏

i∈[d ] (x − i),∑d
i=0 2i2 x i . C1 holds for them implies Theorem 1 & 2.

• C1 holds for
∑d

i=0 2i2 x i implies VP ≠ VNP without GRH!

• It is enough to consider poly-degree restriction on ℓi . In fact, for
Theorem 1, we can assume deg(ℓi) = O(d) while for Theorem 2, we
can assume deg(ℓi) = O(d log d).

• There is a relaxed version of C1 where, instead of the measure�� ⋃ supp(ℓi)
��, we look at

∑
i |supp(ℓi) |.

• We call it SF (f , r, s). Trivially, UF (f , r, s) ≤ SF (f , r, s).

• We could similarly conjecture (C2) that SF (fd , r, ·) is large.

• C2 and GRH implies VP ≠ VNP; it’s not clear whether it implies PIT ∈ P.

12



More on Conjecture C1 and Theorem 1-2

• There are other candidate polynomials for C1, for eg.
∏

i∈[d ] (x − i),∑d
i=0 2i2 x i . C1 holds for them implies Theorem 1 & 2.

• C1 holds for
∑d

i=0 2i2 x i implies VP ≠ VNP without GRH!

• It is enough to consider poly-degree restriction on ℓi . In fact, for
Theorem 1, we can assume deg(ℓi) = O(d) while for Theorem 2, we
can assume deg(ℓi) = O(d log d).

• There is a relaxed version of C1 where, instead of the measure�� ⋃ supp(ℓi)
��, we look at

∑
i |supp(ℓi) |.

• We call it SF (f , r, s). Trivially, UF (f , r, s) ≤ SF (f , r, s).

• We could similarly conjecture (C2) that SF (fd , r, ·) is large.

• C2 and GRH implies VP ≠ VNP; it’s not clear whether it implies PIT ∈ P.

12



More on Conjecture C1 and Theorem 1-2

• There are other candidate polynomials for C1, for eg.
∏

i∈[d ] (x − i),∑d
i=0 2i2 x i . C1 holds for them implies Theorem 1 & 2.

• C1 holds for
∑d

i=0 2i2 x i implies VP ≠ VNP without GRH!

• It is enough to consider poly-degree restriction on ℓi . In fact, for
Theorem 1, we can assume deg(ℓi) = O(d) while for Theorem 2, we
can assume deg(ℓi) = O(d log d).

• There is a relaxed version of C1 where, instead of the measure�� ⋃ supp(ℓi)
��, we look at

∑
i |supp(ℓi) |.

• We call it SF (f , r, s). Trivially, UF (f , r, s) ≤ SF (f , r, s).

• We could similarly conjecture (C2) that SF (fd , r, ·) is large.

• C2 and GRH implies VP ≠ VNP; it’s not clear whether it implies PIT ∈ P.

12



More on Conjecture C1 and Theorem 1-2

• There are other candidate polynomials for C1, for eg.
∏

i∈[d ] (x − i),∑d
i=0 2i2 x i . C1 holds for them implies Theorem 1 & 2.

• C1 holds for
∑d

i=0 2i2 x i implies VP ≠ VNP without GRH!

• It is enough to consider poly-degree restriction on ℓi . In fact, for
Theorem 1, we can assume deg(ℓi) = O(d) while for Theorem 2, we
can assume deg(ℓi) = O(d log d).

• There is a relaxed version of C1 where, instead of the measure�� ⋃ supp(ℓi)
��, we look at

∑
i |supp(ℓi) |.

• We call it SF (f , r, s). Trivially, UF (f , r, s) ≤ SF (f , r, s).

• We could similarly conjecture (C2) that SF (fd , r, ·) is large.

• C2 and GRH implies VP ≠ VNP;

it’s not clear whether it implies PIT ∈ P.

12



More on Conjecture C1 and Theorem 1-2

• There are other candidate polynomials for C1, for eg.
∏

i∈[d ] (x − i),∑d
i=0 2i2 x i . C1 holds for them implies Theorem 1 & 2.

• C1 holds for
∑d

i=0 2i2 x i implies VP ≠ VNP without GRH!

• It is enough to consider poly-degree restriction on ℓi . In fact, for
Theorem 1, we can assume deg(ℓi) = O(d) while for Theorem 2, we
can assume deg(ℓi) = O(d log d).

• There is a relaxed version of C1 where, instead of the measure�� ⋃ supp(ℓi)
��, we look at

∑
i |supp(ℓi) |.

• We call it SF (f , r, s). Trivially, UF (f , r, s) ≤ SF (f , r, s).

• We could similarly conjecture (C2) that SF (fd , r, ·) is large.

• C2 and GRH implies VP ≠ VNP; it’s not clear whether it implies PIT ∈ P.

12



Circuit Normal Form (CNF) and
Algebraic Complexity



An Important CNF

• It was established in [VSBR83, Sap19] that an n-variate, degree d
polynomial f (x), computed by a circuit of size s, can be decomposed as

f (x) =
s′∑

i=1
fi1 · fi2 · fi3 · fi4 · fi5 ,

where

1. top-fanin s′ = poly(s, d),

2. where each fij has circuit size at most poly(s, d)

3. deg(fij ) ≤ d/2, for all i, j.

• This circuit normal-form (CNF) has played a key role in all recent
depth-reduction results [AV08, Koi12, GKKS13, Tav15].

13



An Important CNF

• It was established in [VSBR83, Sap19] that an n-variate, degree d
polynomial f (x), computed by a circuit of size s, can be decomposed as

f (x) =
s′∑

i=1
fi1 · fi2 · fi3 · fi4 · fi5 ,

where

1. top-fanin s′ = poly(s, d),

2. where each fij has circuit size at most poly(s, d)

3. deg(fij ) ≤ d/2, for all i, j.

• This circuit normal-form (CNF) has played a key role in all recent
depth-reduction results [AV08, Koi12, GKKS13, Tav15].

13



An Important CNF

• It was established in [VSBR83, Sap19] that an n-variate, degree d
polynomial f (x), computed by a circuit of size s, can be decomposed as

f (x) =
s′∑

i=1
fi1 · fi2 · fi3 · fi4 · fi5 ,

where

1. top-fanin s′ = poly(s, d),

2. where each fij has circuit size at most poly(s, d)

3. deg(fij ) ≤ d/2, for all i, j.

• This circuit normal-form (CNF) has played a key role in all recent
depth-reduction results [AV08, Koi12, GKKS13, Tav15].

13



An Important CNF

• It was established in [VSBR83, Sap19] that an n-variate, degree d
polynomial f (x), computed by a circuit of size s, can be decomposed as

f (x) =
s′∑

i=1
fi1 · fi2 · fi3 · fi4 · fi5 ,

where

1. top-fanin s′ = poly(s, d),

2. where each fij has circuit size at most poly(s, d)

3. deg(fij ) ≤ d/2, for all i, j.

• This circuit normal-form (CNF) has played a key role in all recent
depth-reduction results [AV08, Koi12, GKKS13, Tav15].

13



An Important CNF

• It was established in [VSBR83, Sap19] that an n-variate, degree d
polynomial f (x), computed by a circuit of size s, can be decomposed as

f (x) =
s′∑

i=1
fi1 · fi2 · fi3 · fi4 · fi5 ,

where

1. top-fanin s′ = poly(s, d),

2. where each fij has circuit size at most poly(s, d)

3. deg(fij ) ≤ d/2, for all i, j.

• This circuit normal-form (CNF) has played a key role in all recent
depth-reduction results [AV08, Koi12, GKKS13, Tav15].

13



An Important CNF

• It was established in [VSBR83, Sap19] that an n-variate, degree d
polynomial f (x), computed by a circuit of size s, can be decomposed as

f (x) =
s′∑

i=1
fi1 · fi2 · fi3 · fi4 · fi5 ,

where

1. top-fanin s′ = poly(s, d),

2. where each fij has circuit size at most poly(s, d)

3. deg(fij ) ≤ d/2, for all i, j.

• This circuit normal-form (CNF) has played a key role in all recent
depth-reduction results [AV08, Koi12, GKKS13, Tav15].

13



An Important CNF

• It was established in [VSBR83, Sap19] that an n-variate, degree d
polynomial f (x), computed by a circuit of size s, can be decomposed as

f (x) =
s′∑

i=1
fi1 · fi2 · fi3 · fi4 · fi5 ,

where

1. top-fanin s′ = poly(s, d),

2. where each fij has circuit size at most poly(s, d)

3. deg(fij ) ≤ d/2, for all i, j.

• This circuit normal-form (CNF) has played a key role in all recent
depth-reduction results [AV08, Koi12, GKKS13, Tav15].

13



CNF to sum of 25-product

Given d-degree f (x), computed by size-s circuit, we decompose f as

f (x) =
poly(s,d)∑

i=1
fi1 · fi2 · fi3 · fi4 · fi5

size(fij) = poly(s, d) and deg(fij) ≤ d/2. Apply CNF to each of fij to get:

f (x) =
poly(s,d)∑

i=1

5∏
j=1

fij

=
poly(s,d)∑

i=1

5∏
j=1

(poly(s,d)∑
k=1

5∏
l=1

fijkl

)
=

poly(s,d)∑
i=1

25∏
j=1

gij ∵
a∏ b∑ c∏

=
ba∑ a·c∏

Note that deg(gij) ≤ d/4.

14



CNF to sum of 25-product

Given d-degree f (x), computed by size-s circuit, we decompose f as

f (x) =
poly(s,d)∑

i=1
fi1 · fi2 · fi3 · fi4 · fi5

size(fij) = poly(s, d) and deg(fij) ≤ d/2. Apply CNF to each of fij to get:

f (x) =
poly(s,d)∑

i=1

5∏
j=1

fij

=
poly(s,d)∑

i=1

5∏
j=1

(poly(s,d)∑
k=1

5∏
l=1

fijkl

)
=

poly(s,d)∑
i=1

25∏
j=1

gij ∵
a∏ b∑ c∏

=
ba∑ a·c∏

Note that deg(gij) ≤ d/4.

14



CNF to sum of 25-product

Given d-degree f (x), computed by size-s circuit, we decompose f as

f (x) =
poly(s,d)∑

i=1
fi1 · fi2 · fi3 · fi4 · fi5

size(fij) = poly(s, d) and deg(fij) ≤ d/2.

Apply CNF to each of fij to get:

f (x) =
poly(s,d)∑

i=1

5∏
j=1

fij

=
poly(s,d)∑

i=1

5∏
j=1

(poly(s,d)∑
k=1

5∏
l=1

fijkl

)
=

poly(s,d)∑
i=1

25∏
j=1

gij ∵
a∏ b∑ c∏

=
ba∑ a·c∏

Note that deg(gij) ≤ d/4.

14



CNF to sum of 25-product

Given d-degree f (x), computed by size-s circuit, we decompose f as

f (x) =
poly(s,d)∑

i=1
fi1 · fi2 · fi3 · fi4 · fi5

size(fij) = poly(s, d) and deg(fij) ≤ d/2. Apply CNF to each of fij to get:

f (x) =
poly(s,d)∑

i=1

5∏
j=1

fij

=
poly(s,d)∑

i=1

5∏
j=1

(poly(s,d)∑
k=1

5∏
l=1

fijkl

)
=

poly(s,d)∑
i=1

25∏
j=1

gij ∵
a∏ b∑ c∏

=
ba∑ a·c∏

Note that deg(gij) ≤ d/4.

14



CNF to sum of 25-product

Given d-degree f (x), computed by size-s circuit, we decompose f as

f (x) =
poly(s,d)∑

i=1
fi1 · fi2 · fi3 · fi4 · fi5

size(fij) = poly(s, d) and deg(fij) ≤ d/2. Apply CNF to each of fij to get:

f (x) =
poly(s,d)∑

i=1

5∏
j=1

fij

=
poly(s,d)∑

i=1

5∏
j=1

(poly(s,d)∑
k=1

5∏
l=1

fijkl

)
=

poly(s,d)∑
i=1

25∏
j=1

gij ∵
a∏ b∑ c∏

=
ba∑ a·c∏

Note that deg(gij) ≤ d/4.

14



CNF to sum of 25-product

Given d-degree f (x), computed by size-s circuit, we decompose f as

f (x) =
poly(s,d)∑

i=1
fi1 · fi2 · fi3 · fi4 · fi5

size(fij) = poly(s, d) and deg(fij) ≤ d/2. Apply CNF to each of fij to get:

f (x) =
poly(s,d)∑

i=1

5∏
j=1

fij

=
poly(s,d)∑

i=1

5∏
j=1

(poly(s,d)∑
k=1

5∏
l=1

fijkl

)

=
poly(s,d)∑

i=1

25∏
j=1

gij ∵
a∏ b∑ c∏

=
ba∑ a·c∏

Note that deg(gij) ≤ d/4.

14



CNF to sum of 25-product

Given d-degree f (x), computed by size-s circuit, we decompose f as

f (x) =
poly(s,d)∑

i=1
fi1 · fi2 · fi3 · fi4 · fi5

size(fij) = poly(s, d) and deg(fij) ≤ d/2. Apply CNF to each of fij to get:

f (x) =
poly(s,d)∑

i=1

5∏
j=1

fij

=
poly(s,d)∑

i=1

5∏
j=1

(poly(s,d)∑
k=1

5∏
l=1

fijkl

)
=

poly(s,d)∑
i=1

25∏
j=1

gij

∵
a∏ b∑ c∏

=
ba∑ a·c∏

Note that deg(gij) ≤ d/4.

14



CNF to sum of 25-product

Given d-degree f (x), computed by size-s circuit, we decompose f as

f (x) =
poly(s,d)∑

i=1
fi1 · fi2 · fi3 · fi4 · fi5

size(fij) = poly(s, d) and deg(fij) ≤ d/2. Apply CNF to each of fij to get:

f (x) =
poly(s,d)∑

i=1

5∏
j=1

fij

=
poly(s,d)∑

i=1

5∏
j=1

(poly(s,d)∑
k=1

5∏
l=1

fijkl

)
=

poly(s,d)∑
i=1

25∏
j=1

gij ∵
a∏ b∑ c∏

=
ba∑ a·c∏

Note that deg(gij) ≤ d/4.

14



CNF to sum of 25-product

Given d-degree f (x), computed by size-s circuit, we decompose f as

f (x) =
poly(s,d)∑

i=1
fi1 · fi2 · fi3 · fi4 · fi5

size(fij) = poly(s, d) and deg(fij) ≤ d/2. Apply CNF to each of fij to get:

f (x) =
poly(s,d)∑

i=1

5∏
j=1

fij

=
poly(s,d)∑

i=1

5∏
j=1

(poly(s,d)∑
k=1

5∏
l=1

fijkl

)
=

poly(s,d)∑
i=1

25∏
j=1

gij ∵
a∏ b∑ c∏

=
ba∑ a·c∏

Note that deg(gij) ≤ d/4.

14



CNF to sum of 25th-powers

Fischer’s Trick (Fischer94)
F be a field of characteristic 0 or > m. One can write g =

∏
i∈[m] gi as:

g = g1 · g2 · . . . gm =
2m∑
j=1

cj · hm
j

where cj ∈ F and hj ∈ spanF (gi | i ∈ [m]), for j ∈ [2m].

From previous slide, we expressed d-degree s-sized f (x) = ∑∏
gij with

deg(gij) ≤ d/4. Apply Fischer’s trick on each
∏

j∈[25] gij to get:

f (x) =
poly(s,d)∑

i=1

25∏
j=1

gij

=
poly(s,d)∑

i=1
ci · g25

i where deg(gi) ≤ d/4.

15



CNF to sum of 25th-powers

Fischer’s Trick (Fischer94)
F be a field of characteristic 0 or > m. One can write g =

∏
i∈[m] gi as:

g = g1 · g2 · . . . gm =
2m∑
j=1

cj · hm
j

where cj ∈ F and hj ∈ spanF (gi | i ∈ [m]), for j ∈ [2m].

From previous slide, we expressed d-degree s-sized f (x) = ∑∏
gij with

deg(gij) ≤ d/4. Apply Fischer’s trick on each
∏

j∈[25] gij to get:

f (x) =
poly(s,d)∑

i=1

25∏
j=1

gij

=
poly(s,d)∑

i=1
ci · g25

i where deg(gi) ≤ d/4.

15



CNF to sum of 25th-powers

Fischer’s Trick (Fischer94)
F be a field of characteristic 0 or > m. One can write g =

∏
i∈[m] gi as:

g = g1 · g2 · . . . gm =
2m∑
j=1

cj · hm
j

where cj ∈ F and hj ∈ spanF (gi | i ∈ [m]), for j ∈ [2m].

From previous slide, we expressed d-degree s-sized f (x) = ∑∏
gij with

deg(gij) ≤ d/4. Apply Fischer’s trick on each
∏

j∈[25] gij to get:

f (x) =
poly(s,d)∑

i=1

25∏
j=1

gij

=
poly(s,d)∑

i=1
ci · g25

i where deg(gi) ≤ d/4.

15



CNF to sum of 25th-powers

Fischer’s Trick (Fischer94)
F be a field of characteristic 0 or > m. One can write g =

∏
i∈[m] gi as:

g = g1 · g2 · . . . gm =
2m∑
j=1

cj · hm
j

where cj ∈ F and hj ∈ spanF (gi | i ∈ [m]), for j ∈ [2m].

From previous slide, we expressed d-degree s-sized f (x) = ∑∏
gij with

deg(gij) ≤ d/4.

Apply Fischer’s trick on each
∏

j∈[25] gij to get:

f (x) =
poly(s,d)∑

i=1

25∏
j=1

gij

=
poly(s,d)∑

i=1
ci · g25

i where deg(gi) ≤ d/4.

15



CNF to sum of 25th-powers

Fischer’s Trick (Fischer94)
F be a field of characteristic 0 or > m. One can write g =

∏
i∈[m] gi as:

g = g1 · g2 · . . . gm =
2m∑
j=1

cj · hm
j

where cj ∈ F and hj ∈ spanF (gi | i ∈ [m]), for j ∈ [2m].

From previous slide, we expressed d-degree s-sized f (x) = ∑∏
gij with

deg(gij) ≤ d/4. Apply Fischer’s trick on each
∏

j∈[25] gij to get:

f (x) =
poly(s,d)∑

i=1

25∏
j=1

gij

=
poly(s,d)∑

i=1
ci · g25

i where deg(gi) ≤ d/4.

15



CNF to sum of 25th-powers

Fischer’s Trick (Fischer94)
F be a field of characteristic 0 or > m. One can write g =

∏
i∈[m] gi as:

g = g1 · g2 · . . . gm =
2m∑
j=1

cj · hm
j

where cj ∈ F and hj ∈ spanF (gi | i ∈ [m]), for j ∈ [2m].

From previous slide, we expressed d-degree s-sized f (x) = ∑∏
gij with

deg(gij) ≤ d/4. Apply Fischer’s trick on each
∏

j∈[25] gij to get:

f (x) =
poly(s,d)∑

i=1

25∏
j=1

gij

=
poly(s,d)∑

i=1
ci · g25

i

where deg(gi) ≤ d/4.

15



CNF to sum of 25th-powers

Fischer’s Trick (Fischer94)
F be a field of characteristic 0 or > m. One can write g =

∏
i∈[m] gi as:

g = g1 · g2 · . . . gm =
2m∑
j=1

cj · hm
j

where cj ∈ F and hj ∈ spanF (gi | i ∈ [m]), for j ∈ [2m].

From previous slide, we expressed d-degree s-sized f (x) = ∑∏
gij with

deg(gij) ≤ d/4. Apply Fischer’s trick on each
∏

j∈[25] gij to get:

f (x) =
poly(s,d)∑

i=1

25∏
j=1

gij

=
poly(s,d)∑

i=1
ci · g25

i where deg(gi) ≤ d/4.

15



mth power to sum of r th-power

Sum-Identity Lemma (DST20)
Let F be a field of characteristic 0 or large. Let h(x) ∈ F[x] and 0 ≤ m ≤ r.
There exist cm,i ∈ F and distinct 𝜆i ∈ F, for 0 ≤ i ≤ r, such that

h(x)m =
r∑

i=0
cm,i (h(x) + 𝜆i)r .

Proof Sketch.
Consider (h(x) + t)r =

∑r
i=0

(r
i
)
hi · tr−i . As m ≤ r, one of the hi must be hm.

Interpolate at t = 𝜆i for 0 ≤ i ≤ r (r + 1-many distinct points).

( r
0
)
𝜆r

0
( r
1
)
𝜆r−1

0 . . .
(r
r
)
𝜆0

0( r
0
)
𝜆r

1
( r
1
)
𝜆r−1

1 . . .
(r
r
)
𝜆0

1
...

...
...

...( r
0
)
𝜆r

r
( r
1
)
𝜆r−1

r . . .
(r
r
)
𝜆0

r


·


1
h
...

hr


=


(h(x) + 𝜆0)r

(h(x) + 𝜆1)r

...

(h(x) + 𝜆r )r


□

16



mth power to sum of r th-power

Sum-Identity Lemma (DST20)
Let F be a field of characteristic 0 or large. Let h(x) ∈ F[x] and 0 ≤ m ≤ r.
There exist cm,i ∈ F and distinct 𝜆i ∈ F, for 0 ≤ i ≤ r, such that

h(x)m =
r∑

i=0
cm,i (h(x) + 𝜆i)r .

Proof Sketch.
Consider (h(x) + t)r =

∑r
i=0

(r
i
)
hi · tr−i . As m ≤ r, one of the hi must be hm.

Interpolate at t = 𝜆i for 0 ≤ i ≤ r (r + 1-many distinct points).

( r
0
)
𝜆r

0
( r
1
)
𝜆r−1

0 . . .
(r
r
)
𝜆0

0( r
0
)
𝜆r

1
( r
1
)
𝜆r−1

1 . . .
(r
r
)
𝜆0

1
...

...
...

...( r
0
)
𝜆r

r
( r
1
)
𝜆r−1

r . . .
(r
r
)
𝜆0

r


·


1
h
...

hr


=


(h(x) + 𝜆0)r

(h(x) + 𝜆1)r

...

(h(x) + 𝜆r )r


□

16



mth power to sum of r th-power

Sum-Identity Lemma (DST20)
Let F be a field of characteristic 0 or large. Let h(x) ∈ F[x] and 0 ≤ m ≤ r.
There exist cm,i ∈ F and distinct 𝜆i ∈ F, for 0 ≤ i ≤ r, such that

h(x)m =
r∑

i=0
cm,i (h(x) + 𝜆i)r .

Proof Sketch.

Consider (h(x) + t)r =
∑r

i=0
(r
i
)
hi · tr−i . As m ≤ r, one of the hi must be hm.

Interpolate at t = 𝜆i for 0 ≤ i ≤ r (r + 1-many distinct points).

( r
0
)
𝜆r

0
( r
1
)
𝜆r−1

0 . . .
(r
r
)
𝜆0

0( r
0
)
𝜆r

1
( r
1
)
𝜆r−1

1 . . .
(r
r
)
𝜆0

1
...

...
...

...( r
0
)
𝜆r

r
( r
1
)
𝜆r−1

r . . .
(r
r
)
𝜆0

r


·


1
h
...

hr


=


(h(x) + 𝜆0)r

(h(x) + 𝜆1)r

...

(h(x) + 𝜆r )r


□

16



mth power to sum of r th-power

Sum-Identity Lemma (DST20)
Let F be a field of characteristic 0 or large. Let h(x) ∈ F[x] and 0 ≤ m ≤ r.
There exist cm,i ∈ F and distinct 𝜆i ∈ F, for 0 ≤ i ≤ r, such that

h(x)m =
r∑

i=0
cm,i (h(x) + 𝜆i)r .

Proof Sketch.
Consider (h(x) + t)r =

∑r
i=0

(r
i
)
hi · tr−i .

As m ≤ r, one of the hi must be hm.
Interpolate at t = 𝜆i for 0 ≤ i ≤ r (r + 1-many distinct points).

( r
0
)
𝜆r

0
( r
1
)
𝜆r−1

0 . . .
(r
r
)
𝜆0

0( r
0
)
𝜆r

1
( r
1
)
𝜆r−1

1 . . .
(r
r
)
𝜆0

1
...

...
...

...( r
0
)
𝜆r

r
( r
1
)
𝜆r−1

r . . .
(r
r
)
𝜆0

r


·


1
h
...

hr


=


(h(x) + 𝜆0)r

(h(x) + 𝜆1)r

...

(h(x) + 𝜆r )r


□

16



mth power to sum of r th-power

Sum-Identity Lemma (DST20)
Let F be a field of characteristic 0 or large. Let h(x) ∈ F[x] and 0 ≤ m ≤ r.
There exist cm,i ∈ F and distinct 𝜆i ∈ F, for 0 ≤ i ≤ r, such that

h(x)m =
r∑

i=0
cm,i (h(x) + 𝜆i)r .

Proof Sketch.
Consider (h(x) + t)r =

∑r
i=0

(r
i
)
hi · tr−i . As m ≤ r, one of the hi must be hm.

Interpolate at t = 𝜆i for 0 ≤ i ≤ r (r + 1-many distinct points).

( r
0
)
𝜆r

0
( r
1
)
𝜆r−1

0 . . .
(r
r
)
𝜆0

0( r
0
)
𝜆r

1
( r
1
)
𝜆r−1

1 . . .
(r
r
)
𝜆0

1
...

...
...

...( r
0
)
𝜆r

r
( r
1
)
𝜆r−1

r . . .
(r
r
)
𝜆0

r


·


1
h
...

hr


=


(h(x) + 𝜆0)r

(h(x) + 𝜆1)r

...

(h(x) + 𝜆r )r


□

16



mth power to sum of r th-power

Sum-Identity Lemma (DST20)
Let F be a field of characteristic 0 or large. Let h(x) ∈ F[x] and 0 ≤ m ≤ r.
There exist cm,i ∈ F and distinct 𝜆i ∈ F, for 0 ≤ i ≤ r, such that

h(x)m =
r∑

i=0
cm,i (h(x) + 𝜆i)r .

Proof Sketch.
Consider (h(x) + t)r =

∑r
i=0

(r
i
)
hi · tr−i . As m ≤ r, one of the hi must be hm.

Interpolate at t = 𝜆i for 0 ≤ i ≤ r (r + 1-many distinct points).



( r
0
)
𝜆r

0
( r
1
)
𝜆r−1

0 . . .
(r
r
)
𝜆0

0( r
0
)
𝜆r

1
( r
1
)
𝜆r−1

1 . . .
(r
r
)
𝜆0

1
...

...
...

...( r
0
)
𝜆r

r
( r
1
)
𝜆r−1

r . . .
(r
r
)
𝜆0

r


·


1
h
...

hr


=


(h(x) + 𝜆0)r

(h(x) + 𝜆1)r

...

(h(x) + 𝜆r )r


□

16



mth power to sum of r th-power

Sum-Identity Lemma (DST20)
Let F be a field of characteristic 0 or large. Let h(x) ∈ F[x] and 0 ≤ m ≤ r.
There exist cm,i ∈ F and distinct 𝜆i ∈ F, for 0 ≤ i ≤ r, such that

h(x)m =
r∑

i=0
cm,i (h(x) + 𝜆i)r .

Proof Sketch.
Consider (h(x) + t)r =

∑r
i=0

(r
i
)
hi · tr−i . As m ≤ r, one of the hi must be hm.

Interpolate at t = 𝜆i for 0 ≤ i ≤ r (r + 1-many distinct points).

( r
0
)
𝜆r

0
( r
1
)
𝜆r−1

0 . . .
(r
r
)
𝜆0

0( r
0
)
𝜆r

1
( r
1
)
𝜆r−1

1 . . .
(r
r
)
𝜆0

1
...

...
...

...( r
0
)
𝜆r

r
( r
1
)
𝜆r−1

r . . .
(r
r
)
𝜆0

r


·


1
h
...

hr


=


(h(x) + 𝜆0)r

(h(x) + 𝜆1)r

...

(h(x) + 𝜆r )r


□

16



CNF to sum of constant r th-power

We have already established that n-variate, d-degree f (x) computed by size-s
circuit can be written as poly(s, d)-many sum of 25th-powers of degree at
most d/4.

Using the Sum-Identity lemma, for r ≥ 25, we get:

f (x) =
poly(s,d)∑

i=1
ci · g25

i

=
poly(s,d)∑

i=1

(
r∑

j=0
cij ·

(
gi + 𝜆j

) r

)
=

(r+1) ·poly(s,d)∑
i=1

c′i · g̃r
i where deg(g̃i) ≤ d/4 and c′i ∈ F

∈
poly(s,d)∑ r∧ ∑ d/4∏

.

17



CNF to sum of constant r th-power

We have already established that n-variate, d-degree f (x) computed by size-s
circuit can be written as poly(s, d)-many sum of 25th-powers of degree at
most d/4. Using the Sum-Identity lemma, for r ≥ 25, we get:

f (x) =
poly(s,d)∑

i=1
ci · g25

i

=
poly(s,d)∑

i=1

(
r∑

j=0
cij ·

(
gi + 𝜆j

) r

)
=

(r+1) ·poly(s,d)∑
i=1

c′i · g̃r
i where deg(g̃i) ≤ d/4 and c′i ∈ F

∈
poly(s,d)∑ r∧ ∑ d/4∏

.

17



CNF to sum of constant r th-power

We have already established that n-variate, d-degree f (x) computed by size-s
circuit can be written as poly(s, d)-many sum of 25th-powers of degree at
most d/4. Using the Sum-Identity lemma, for r ≥ 25, we get:

f (x) =
poly(s,d)∑

i=1
ci · g25

i

=
poly(s,d)∑

i=1

(
r∑

j=0
cij ·

(
gi + 𝜆j

) r

)
=

(r+1) ·poly(s,d)∑
i=1

c′i · g̃r
i where deg(g̃i) ≤ d/4 and c′i ∈ F

∈
poly(s,d)∑ r∧ ∑ d/4∏

.

17



CNF to sum of constant r th-power

We have already established that n-variate, d-degree f (x) computed by size-s
circuit can be written as poly(s, d)-many sum of 25th-powers of degree at
most d/4. Using the Sum-Identity lemma, for r ≥ 25, we get:

f (x) =
poly(s,d)∑

i=1
ci · g25

i

=
poly(s,d)∑

i=1

(
r∑

j=0
cij ·

(
gi + 𝜆j

) r

)

=
(r+1) ·poly(s,d)∑

i=1
c′i · g̃r

i where deg(g̃i) ≤ d/4 and c′i ∈ F

∈
poly(s,d)∑ r∧ ∑ d/4∏

.

17



CNF to sum of constant r th-power

We have already established that n-variate, d-degree f (x) computed by size-s
circuit can be written as poly(s, d)-many sum of 25th-powers of degree at
most d/4. Using the Sum-Identity lemma, for r ≥ 25, we get:

f (x) =
poly(s,d)∑

i=1
ci · g25

i

=
poly(s,d)∑

i=1

(
r∑

j=0
cij ·

(
gi + 𝜆j

) r

)
=

(r+1) ·poly(s,d)∑
i=1

c′i · g̃r
i

where deg(g̃i) ≤ d/4 and c′i ∈ F

∈
poly(s,d)∑ r∧ ∑ d/4∏

.

17



CNF to sum of constant r th-power

We have already established that n-variate, d-degree f (x) computed by size-s
circuit can be written as poly(s, d)-many sum of 25th-powers of degree at
most d/4. Using the Sum-Identity lemma, for r ≥ 25, we get:

f (x) =
poly(s,d)∑

i=1
ci · g25

i

=
poly(s,d)∑

i=1

(
r∑

j=0
cij ·

(
gi + 𝜆j

) r

)
=

(r+1) ·poly(s,d)∑
i=1

c′i · g̃r
i where deg(g̃i) ≤ d/4 and c′i ∈ F

∈
poly(s,d)∑ r∧ ∑ d/4∏

.

17



CNF to sum of constant r th-power

We have already established that n-variate, d-degree f (x) computed by size-s
circuit can be written as poly(s, d)-many sum of 25th-powers of degree at
most d/4. Using the Sum-Identity lemma, for r ≥ 25, we get:

f (x) =
poly(s,d)∑

i=1
ci · g25

i

=
poly(s,d)∑

i=1

(
r∑

j=0
cij ·

(
gi + 𝜆j

) r

)
=

(r+1) ·poly(s,d)∑
i=1

c′i · g̃r
i where deg(g̃i) ≤ d/4 and c′i ∈ F

∈
poly(s,d)∑ r∧ ∑ d/4∏

.

17



Proof Idea of Main Theorems



Proof of Theorem 1: Conjecture C1 to PIT

• Assume C1 holds i.e. for fd := (x + 1)d , UF (fd , r, d 𝛿1 ) ≥ d/r 𝛿2 .

• Idea: use C1 to prove that a fixed constant k-variate O(n)-degree hard
polynomial family (Pk,n)n exists i.e. size(Pk,n) = nΩ(1) .

• Use fd to construct a k-variate O(n) degree polynomial Pk,n (d := d (n)).

• Use GKSS19: constant k-variate (k ≥ 4) explicit hard polynomial
implies blackbox-PIT ∈ P.

18



Proof of Theorem 1: Conjecture C1 to PIT

• Assume C1 holds i.e. for fd := (x + 1)d , UF (fd , r, d 𝛿1 ) ≥ d/r 𝛿2 .

• Idea: use C1 to prove that a fixed constant k-variate O(n)-degree hard
polynomial family (Pk,n)n exists i.e. size(Pk,n) = nΩ(1) .

• Use fd to construct a k-variate O(n) degree polynomial Pk,n (d := d (n)).

• Use GKSS19: constant k-variate (k ≥ 4) explicit hard polynomial
implies blackbox-PIT ∈ P.

18



Proof of Theorem 1: Conjecture C1 to PIT

• Assume C1 holds i.e. for fd := (x + 1)d , UF (fd , r, d 𝛿1 ) ≥ d/r 𝛿2 .

• Idea: use C1 to prove that a fixed constant k-variate O(n)-degree hard
polynomial family (Pk,n)n exists i.e. size(Pk,n) = nΩ(1) .

• Use fd to construct a k-variate O(n) degree polynomial Pk,n (d := d (n)).

• Use GKSS19: constant k-variate (k ≥ 4) explicit hard polynomial
implies blackbox-PIT ∈ P.

18



Proof of Theorem 1: Conjecture C1 to PIT

• Assume C1 holds i.e. for fd := (x + 1)d , UF (fd , r, d 𝛿1 ) ≥ d/r 𝛿2 .

• Idea: use C1 to prove that a fixed constant k-variate O(n)-degree hard
polynomial family (Pk,n)n exists i.e. size(Pk,n) = nΩ(1) .

• Use fd to construct a k-variate O(n) degree polynomial Pk,n (d := d (n)).

• Use GKSS19: constant k-variate (k ≥ 4) explicit hard polynomial
implies blackbox-PIT ∈ P.

18



Proof of Theorem 1: Conjecture C1 to PIT

• Assume C1 holds i.e. for fd := (x + 1)d , UF (fd , r, d 𝛿1 ) ≥ d/r 𝛿2 .

• Idea: use C1 to prove that a fixed constant k-variate O(n)-degree hard
polynomial family (Pk,n)n exists i.e. size(Pk,n) = nΩ(1) .

• Use fd to construct a k-variate O(n) degree polynomial Pk,n (d := d (n)).

• Use GKSS19: constant k-variate (k ≥ 4) explicit hard polynomial
implies blackbox-PIT ∈ P.

18



Conjecture C1 to constant k-variate hard polynomial

• Fix a large k .

19



Conjecture C1 to constant k-variate hard polynomial

• Fix a large k (k ≥ max (17(𝛿2 + 1), 19r/𝛿1)).

19



Conjecture C1 to constant k-variate hard polynomial

• Fix a large k . For every n ∈ N, choose the largest d := d (n) which is
≤ (n + 1)k − 1 and d ∈ Ir .

19



Conjecture C1 to constant k-variate hard polynomial

• Fix a large k . For every n ∈ N, choose the largest d := d (n) which is
≤ (n + 1)k − 1 and d ∈ Ir . Observe: d = Ω((n + 1)k).

19



Conjecture C1 to constant k-variate hard polynomial

• Fix a large k . For every n ∈ N, choose the largest d := d (n) which is
≤ (n + 1)k − 1 and d ∈ Ir . Observe: d = Ω((n + 1)k).

• Apply inverse Kronecker substitution on fd to construct Pk,n:

19



Conjecture C1 to constant k-variate hard polynomial

• Fix a large k . For every n ∈ N, choose the largest d := d (n) which is
≤ (n + 1)k − 1 and d ∈ Ir . Observe: d = Ω((n + 1)k).

• Apply inverse Kronecker substitution on fd to construct Pk,n:

Pk,n (x1, . . . , xk) ↦→ Pk,n

(
x (n+1)0

, . . . , x (n+1)k−1
)
= fd (x),

19



Conjecture C1 to constant k-variate hard polynomial

• Fix a large k . For every n ∈ N, choose the largest d := d (n) which is
≤ (n + 1)k − 1 and d ∈ Ir . Observe: d = Ω((n + 1)k).

• Apply inverse Kronecker substitution on fd to construct Pk,n:

Pk,n (x1, . . . , xk) ↦→ Pk,n

(
x (n+1)0

, . . . , x (n+1)k−1
)
= fd (x),

Pk,n is a k-variate polynomial with individual degree at most n. Thus, it
is a bijection between supp(Pk,n) and supp(fd).

19



Conjecture C1 to constant k-variate hard polynomial

• Fix a large k . For every n ∈ N, choose the largest d := d (n) which is
≤ (n + 1)k − 1 and d ∈ Ir . Observe: d = Ω((n + 1)k).

• Apply inverse Kronecker substitution on fd to construct Pk,n:

Pk,n (x1, . . . , xk) ↦→ Pk,n

(
x (n+1)0

, . . . , x (n+1)k−1
)
= fd (x),

Pk,n is a k-variate polynomial with individual degree at most n. Thus, it
is a bijection between supp(Pk,n) and supp(fd).

• Note that: deg(Pk,n) ≤ k · n = O(n).

19



Conjecture C1 to constant k-variate hard polynomial

• Fix a large k . For every n ∈ N, choose the largest d := d (n) which is
≤ (n + 1)k − 1 and d ∈ Ir . Observe: d = Ω((n + 1)k).

• Apply inverse Kronecker substitution on fd to construct Pk,n:

Pk,n (x1, . . . , xk) ↦→ Pk,n

(
x (n+1)0

, . . . , x (n+1)k−1
)
= fd (x),

Pk,n is a k-variate polynomial with individual degree at most n. Thus, it
is a bijection between supp(Pk,n) and supp(fd).

• Note that: deg(Pk,n) ≤ k · n = O(n).

• Claim: size(Pk,n) =
(
deg(Pk,n)

)Ω(1) = dΩ(1) .

19



Conjecture C1 to constant k-variate hard polynomial

• Fix a large k . For every n ∈ N, choose the largest d := d (n) which is
≤ (n + 1)k − 1 and d ∈ Ir . Observe: d = Ω((n + 1)k).

• Apply inverse Kronecker substitution on fd to construct Pk,n:

Pk,n (x1, . . . , xk) ↦→ Pk,n

(
x (n+1)0

, . . . , x (n+1)k−1
)
= fd (x),

Pk,n is a k-variate polynomial with individual degree at most n. Thus, it
is a bijection between supp(Pk,n) and supp(fd).

• Note that: deg(Pk,n) ≤ k · n = O(n).

• Claim: size(Pk,n) =
(
deg(Pk,n)

)Ω(1) = dΩ(1) . Proof by contradiction:
If Pk,n is not hard, then C1 doesn’t hold for infinitely many d ∈ Ir .

19



Proof of hardness of Pk,n

• Suppose, size(Pk,n) ≤ d1/𝜇 (𝜇, depending on r, 𝛿1, 𝛿2, fixed later).

• We know, using the derived CNF, Pk,n can be written as

Pk,n =
poly(d1/𝜇 ,kn)∑

i=1
c′i · g̃r

i

where deg(g̃i) ≤ kn/4.

• Direct counting argument shows:
�� ⋃

i supp(g̃i)
�� ≤ (k+kn/4

k
)
.

• Let 𝜙 be the Kronecker map 𝜙 : xi ↦→ x (n+1) i−1 for i ∈ [k]. Then,

fd = 𝜙(Pk,n) =
poly(d1/𝜇 ,kn)∑

i=1
c′i · 𝜙(g̃i)r

• 𝜙 cannot increase the union-support or the top fan-in.

20



Proof of hardness of Pk,n

• Suppose, size(Pk,n) ≤ d1/𝜇 (𝜇, depending on r, 𝛿1, 𝛿2, fixed later).

• We know, using the derived CNF, Pk,n can be written as

Pk,n =
poly(d1/𝜇 ,kn)∑

i=1
c′i · g̃r

i

where deg(g̃i) ≤ kn/4.

• Direct counting argument shows:
�� ⋃

i supp(g̃i)
�� ≤ (k+kn/4

k
)
.

• Let 𝜙 be the Kronecker map 𝜙 : xi ↦→ x (n+1) i−1 for i ∈ [k]. Then,

fd = 𝜙(Pk,n) =
poly(d1/𝜇 ,kn)∑

i=1
c′i · 𝜙(g̃i)r

• 𝜙 cannot increase the union-support or the top fan-in.

20



Proof of hardness of Pk,n

• Suppose, size(Pk,n) ≤ d1/𝜇 (𝜇, depending on r, 𝛿1, 𝛿2, fixed later).

• We know, using the derived CNF, Pk,n can be written as

Pk,n =
poly(d1/𝜇 ,kn)∑

i=1
c′i · g̃r

i

where deg(g̃i) ≤ kn/4.

• Direct counting argument shows:
�� ⋃

i supp(g̃i)
�� ≤ (k+kn/4

k
)
.

• Let 𝜙 be the Kronecker map 𝜙 : xi ↦→ x (n+1) i−1 for i ∈ [k]. Then,

fd = 𝜙(Pk,n) =
poly(d1/𝜇 ,kn)∑

i=1
c′i · 𝜙(g̃i)r

• 𝜙 cannot increase the union-support or the top fan-in.

20



Proof of hardness of Pk,n

• Suppose, size(Pk,n) ≤ d1/𝜇 (𝜇, depending on r, 𝛿1, 𝛿2, fixed later).

• We know, using the derived CNF, Pk,n can be written as

Pk,n =
poly(d1/𝜇 ,kn)∑

i=1
c′i · g̃r

i

where deg(g̃i) ≤ kn/4.

• Direct counting argument shows:
�� ⋃

i supp(g̃i)
�� ≤ (k+kn/4

k
)
.

• Let 𝜙 be the Kronecker map 𝜙 : xi ↦→ x (n+1) i−1 for i ∈ [k]. Then,

fd = 𝜙(Pk,n) =
poly(d1/𝜇 ,kn)∑

i=1
c′i · 𝜙(g̃i)r

• 𝜙 cannot increase the union-support or the top fan-in.

20



Proof of hardness of Pk,n

• Suppose, size(Pk,n) ≤ d1/𝜇 (𝜇, depending on r, 𝛿1, 𝛿2, fixed later).

• We know, using the derived CNF, Pk,n can be written as

Pk,n =
poly(d1/𝜇 ,kn)∑

i=1
c′i · g̃r

i

where deg(g̃i) ≤ kn/4.

• Direct counting argument shows:
�� ⋃

i supp(g̃i)
�� ≤ (k+kn/4

k
)
.

• Let 𝜙 be the Kronecker map 𝜙 : xi ↦→ x (n+1) i−1 for i ∈ [k]. Then,

fd = 𝜙(Pk,n) =
poly(d1/𝜇 ,kn)∑

i=1
c′i · 𝜙(g̃i)r

• 𝜙 cannot increase the union-support or the top fan-in.

20



Proof of hardness of Pk,n

• Suppose, size(Pk,n) ≤ d1/𝜇 (𝜇, depending on r, 𝛿1, 𝛿2, fixed later).

• We know, using the derived CNF, Pk,n can be written as

Pk,n =
poly(d1/𝜇 ,kn)∑

i=1
c′i · g̃r

i

where deg(g̃i) ≤ kn/4.

• Direct counting argument shows:
�� ⋃

i supp(g̃i)
�� ≤ (k+kn/4

k
)
.

• Let 𝜙 be the Kronecker map 𝜙 : xi ↦→ x (n+1) i−1 for i ∈ [k]. Then,

fd = 𝜙(Pk,n) =
poly(d1/𝜇 ,kn)∑

i=1
c′i · 𝜙(g̃i)r

• 𝜙 cannot increase the union-support or the top fan-in.

20



Finishing Theorem 1

• fd has sum of r-th power representation with top fan-in
s0 := poly(d1/𝜇, kn) and support-union at most s1 :=

(k+kn/4
k

)
.

• This means, in notation: UF (fd , r, s0) ≤ s1.

• Choose 𝜇 appropriately so that s0 ≤ d 𝛿1 and s1 < d/r 𝛿2 .

• This means, UF (fd , r, d 𝛿1 ) < d/r 𝛿2 for infinitely many d ∈ Ir , a
contradiction!

• Pk,n is hard =⇒ PIT ∈ P (using GKSS19).

• Instead of 25-CNF, we could have used 5-CNF, then s1 :=
(k+kn/2

k
)

which is > d. Thus, r ≥ 25 is required!

21



Finishing Theorem 1

• fd has sum of r-th power representation with top fan-in
s0 := poly(d1/𝜇, kn) and support-union at most s1 :=

(k+kn/4
k

)
.

• This means, in notation: UF (fd , r, s0) ≤ s1.

• Choose 𝜇 appropriately so that s0 ≤ d 𝛿1 and s1 < d/r 𝛿2 .

• This means, UF (fd , r, d 𝛿1 ) < d/r 𝛿2 for infinitely many d ∈ Ir , a
contradiction!

• Pk,n is hard =⇒ PIT ∈ P (using GKSS19).

• Instead of 25-CNF, we could have used 5-CNF, then s1 :=
(k+kn/2

k
)

which is > d. Thus, r ≥ 25 is required!

21



Finishing Theorem 1

• fd has sum of r-th power representation with top fan-in
s0 := poly(d1/𝜇, kn) and support-union at most s1 :=

(k+kn/4
k

)
.

• This means, in notation: UF (fd , r, s0) ≤ s1.

• Choose 𝜇 appropriately so that s0 ≤ d 𝛿1 and s1 < d/r 𝛿2 .

• This means, UF (fd , r, d 𝛿1 ) < d/r 𝛿2 for infinitely many d ∈ Ir , a
contradiction!

• Pk,n is hard =⇒ PIT ∈ P (using GKSS19).

• Instead of 25-CNF, we could have used 5-CNF, then s1 :=
(k+kn/2

k
)

which is > d. Thus, r ≥ 25 is required!

21



Finishing Theorem 1

• fd has sum of r-th power representation with top fan-in
s0 := poly(d1/𝜇, kn) and support-union at most s1 :=

(k+kn/4
k

)
.

• This means, in notation: UF (fd , r, s0) ≤ s1.

• Choose 𝜇 appropriately so that s0 ≤ d 𝛿1 and s1 < d/r 𝛿2 .

• This means, UF (fd , r, d 𝛿1 ) < d/r 𝛿2 for infinitely many d ∈ Ir , a
contradiction!

• Pk,n is hard =⇒ PIT ∈ P (using GKSS19).

• Instead of 25-CNF, we could have used 5-CNF, then s1 :=
(k+kn/2

k
)

which is > d. Thus, r ≥ 25 is required!

21



Finishing Theorem 1

• fd has sum of r-th power representation with top fan-in
s0 := poly(d1/𝜇, kn) and support-union at most s1 :=

(k+kn/4
k

)
.

• This means, in notation: UF (fd , r, s0) ≤ s1.

• Choose 𝜇 appropriately so that s0 ≤ d 𝛿1 and s1 < d/r 𝛿2 .

• This means, UF (fd , r, d 𝛿1 ) < d/r 𝛿2 for infinitely many d ∈ Ir , a
contradiction!

• Pk,n is hard =⇒ PIT ∈ P (using GKSS19).

• Instead of 25-CNF, we could have used 5-CNF, then s1 :=
(k+kn/2

k
)

which is > d. Thus, r ≥ 25 is required!

21



Finishing Theorem 1

• fd has sum of r-th power representation with top fan-in
s0 := poly(d1/𝜇, kn) and support-union at most s1 :=

(k+kn/4
k

)
.

• This means, in notation: UF (fd , r, s0) ≤ s1.

• Choose 𝜇 appropriately so that s0 ≤ d 𝛿1 and s1 < d/r 𝛿2 .

• This means, UF (fd , r, d 𝛿1 ) < d/r 𝛿2 for infinitely many d ∈ Ir , a
contradiction!

• Pk,n is hard =⇒ PIT ∈ P (using GKSS19).

• Instead of 25-CNF, we could have used 5-CNF, then s1 :=
(k+kn/2

k
)

which is > d. Thus, r ≥ 25 is required!

21



Proof of Theorem 2: Conjecture C1 to VP ≠ VNP

• Fix a large constant n. For every k ∈ N, choose the largest d := d (k)
which is ≤ (n + 1)k − 1 and d ∈ Ir . Thus, d = Ω((n + 1)k) = 2Ω(k) .

• From fd construct Pk,n, a k-variate, n-individual degree polynomial:

Pk,n (x1, . . . , xk) ↦→ Pk,n

(
x (n+1)0

, . . . , x (n+1)k−1
)
= fd (x),

• Note that: deg(Pk,n) ≤ k · n = O(k).

• We will show that Conjecture C1 implies
size(Pk,n) ≥ dΩ(1) = 2Ω(k) = 2Ω(deg(Pk,n)) =⇒ {Pk,n}k ∉ VP.

• Assume GRH and VP = VNP, we will show that {Pk,n}k ∈ VP.

• Thus, GRH and Conjecture C1 =⇒ VP ≠ VNP.

22



Proof of Theorem 2: Conjecture C1 to VP ≠ VNP

• Fix a large constant n.

For every k ∈ N, choose the largest d := d (k)
which is ≤ (n + 1)k − 1 and d ∈ Ir . Thus, d = Ω((n + 1)k) = 2Ω(k) .

• From fd construct Pk,n, a k-variate, n-individual degree polynomial:

Pk,n (x1, . . . , xk) ↦→ Pk,n

(
x (n+1)0

, . . . , x (n+1)k−1
)
= fd (x),

• Note that: deg(Pk,n) ≤ k · n = O(k).

• We will show that Conjecture C1 implies
size(Pk,n) ≥ dΩ(1) = 2Ω(k) = 2Ω(deg(Pk,n)) =⇒ {Pk,n}k ∉ VP.

• Assume GRH and VP = VNP, we will show that {Pk,n}k ∈ VP.

• Thus, GRH and Conjecture C1 =⇒ VP ≠ VNP.

22



Proof of Theorem 2: Conjecture C1 to VP ≠ VNP

• Fix a large constant n. For every k ∈ N, choose the largest d := d (k)
which is ≤ (n + 1)k − 1 and d ∈ Ir .

Thus, d = Ω((n + 1)k) = 2Ω(k) .

• From fd construct Pk,n, a k-variate, n-individual degree polynomial:

Pk,n (x1, . . . , xk) ↦→ Pk,n

(
x (n+1)0

, . . . , x (n+1)k−1
)
= fd (x),

• Note that: deg(Pk,n) ≤ k · n = O(k).

• We will show that Conjecture C1 implies
size(Pk,n) ≥ dΩ(1) = 2Ω(k) = 2Ω(deg(Pk,n)) =⇒ {Pk,n}k ∉ VP.

• Assume GRH and VP = VNP, we will show that {Pk,n}k ∈ VP.

• Thus, GRH and Conjecture C1 =⇒ VP ≠ VNP.

22



Proof of Theorem 2: Conjecture C1 to VP ≠ VNP

• Fix a large constant n. For every k ∈ N, choose the largest d := d (k)
which is ≤ (n + 1)k − 1 and d ∈ Ir . Thus, d = Ω((n + 1)k) = 2Ω(k) .

• From fd construct Pk,n, a k-variate, n-individual degree polynomial:

Pk,n (x1, . . . , xk) ↦→ Pk,n

(
x (n+1)0

, . . . , x (n+1)k−1
)
= fd (x),

• Note that: deg(Pk,n) ≤ k · n = O(k).

• We will show that Conjecture C1 implies
size(Pk,n) ≥ dΩ(1) = 2Ω(k) = 2Ω(deg(Pk,n)) =⇒ {Pk,n}k ∉ VP.

• Assume GRH and VP = VNP, we will show that {Pk,n}k ∈ VP.

• Thus, GRH and Conjecture C1 =⇒ VP ≠ VNP.

22



Proof of Theorem 2: Conjecture C1 to VP ≠ VNP

• Fix a large constant n. For every k ∈ N, choose the largest d := d (k)
which is ≤ (n + 1)k − 1 and d ∈ Ir . Thus, d = Ω((n + 1)k) = 2Ω(k) .

• From fd construct Pk,n, a k-variate, n-individual degree polynomial:

Pk,n (x1, . . . , xk) ↦→ Pk,n

(
x (n+1)0

, . . . , x (n+1)k−1
)
= fd (x),

• Note that: deg(Pk,n) ≤ k · n = O(k).

• We will show that Conjecture C1 implies
size(Pk,n) ≥ dΩ(1) = 2Ω(k) = 2Ω(deg(Pk,n)) =⇒ {Pk,n}k ∉ VP.

• Assume GRH and VP = VNP, we will show that {Pk,n}k ∈ VP.

• Thus, GRH and Conjecture C1 =⇒ VP ≠ VNP.

22



Proof of Theorem 2: Conjecture C1 to VP ≠ VNP

• Fix a large constant n. For every k ∈ N, choose the largest d := d (k)
which is ≤ (n + 1)k − 1 and d ∈ Ir . Thus, d = Ω((n + 1)k) = 2Ω(k) .

• From fd construct Pk,n, a k-variate, n-individual degree polynomial:

Pk,n (x1, . . . , xk) ↦→ Pk,n

(
x (n+1)0

, . . . , x (n+1)k−1
)
= fd (x),

• Note that: deg(Pk,n) ≤ k · n = O(k).

• We will show that Conjecture C1 implies
size(Pk,n) ≥ dΩ(1) = 2Ω(k) = 2Ω(deg(Pk,n)) =⇒ {Pk,n}k ∉ VP.

• Assume GRH and VP = VNP, we will show that {Pk,n}k ∈ VP.

• Thus, GRH and Conjecture C1 =⇒ VP ≠ VNP.

22



Proof of Theorem 2: Conjecture C1 to VP ≠ VNP

• Fix a large constant n. For every k ∈ N, choose the largest d := d (k)
which is ≤ (n + 1)k − 1 and d ∈ Ir . Thus, d = Ω((n + 1)k) = 2Ω(k) .

• From fd construct Pk,n, a k-variate, n-individual degree polynomial:

Pk,n (x1, . . . , xk) ↦→ Pk,n

(
x (n+1)0

, . . . , x (n+1)k−1
)
= fd (x),

• Note that: deg(Pk,n) ≤ k · n = O(k).

• We will show that Conjecture C1 implies
size(Pk,n) ≥ dΩ(1) = 2Ω(k) = 2Ω(deg(Pk,n)) =⇒ {Pk,n}k ∉ VP.

• Assume GRH and VP = VNP, we will show that {Pk,n}k ∈ VP.

• Thus, GRH and Conjecture C1 =⇒ VP ≠ VNP.

22



Proof of Theorem 2: Conjecture C1 to VP ≠ VNP

• Fix a large constant n. For every k ∈ N, choose the largest d := d (k)
which is ≤ (n + 1)k − 1 and d ∈ Ir . Thus, d = Ω((n + 1)k) = 2Ω(k) .

• From fd construct Pk,n, a k-variate, n-individual degree polynomial:

Pk,n (x1, . . . , xk) ↦→ Pk,n

(
x (n+1)0

, . . . , x (n+1)k−1
)
= fd (x),

• Note that: deg(Pk,n) ≤ k · n = O(k).

• We will show that Conjecture C1 implies
size(Pk,n) ≥ dΩ(1) = 2Ω(k) = 2Ω(deg(Pk,n)) =⇒ {Pk,n}k ∉ VP.

• Assume GRH and VP = VNP, we will show that {Pk,n}k ∈ VP.

• Thus, GRH and Conjecture C1 =⇒ VP ≠ VNP.

22



Proof of Theorem 2: Conjecture C1 to VP ≠ VNP

• Fix a large constant n. For every k ∈ N, choose the largest d := d (k)
which is ≤ (n + 1)k − 1 and d ∈ Ir . Thus, d = Ω((n + 1)k) = 2Ω(k) .

• From fd construct Pk,n, a k-variate, n-individual degree polynomial:

Pk,n (x1, . . . , xk) ↦→ Pk,n

(
x (n+1)0

, . . . , x (n+1)k−1
)
= fd (x),

• Note that: deg(Pk,n) ≤ k · n = O(k).

• We will show that Conjecture C1 implies
size(Pk,n) ≥ dΩ(1) = 2Ω(k) = 2Ω(deg(Pk,n)) =⇒ {Pk,n}k ∉ VP.

• Assume GRH and VP = VNP, we will show that {Pk,n}k ∈ VP.

• Thus, GRH and Conjecture C1 =⇒ VP ≠ VNP.

22



GRH and VP = VNP =⇒ {Pk,n}k ∈ VP

• One can write Pk,n (x) as

Pk,n (x) =
∑

e∈[0,c]k

(
d
e

)
· xe

•
(d
e
)

are computable in complexity class CH (Counting Hierarchy).

• Bürgisser proved (in 2000) that if VP = VNP and GRH, then
CH = P/poly. This means,

(d
e
)

are computable in P/poly.

• Using Valiant’s Criterion, {Pk,n}k ∈ VNP = VP.

23



GRH and VP = VNP =⇒ {Pk,n}k ∈ VP

• One can write Pk,n (x) as

Pk,n (x) =
∑

e∈[0,c]k

(
d
e

)
· xe

•
(d
e
)

are computable in complexity class CH (Counting Hierarchy).

• Bürgisser proved (in 2000) that if VP = VNP and GRH, then
CH = P/poly. This means,

(d
e
)

are computable in P/poly.

• Using Valiant’s Criterion, {Pk,n}k ∈ VNP = VP.

23



GRH and VP = VNP =⇒ {Pk,n}k ∈ VP

• One can write Pk,n (x) as

Pk,n (x) =
∑

e∈[0,c]k

(
d
e

)
· xe

•
(d
e
)

are computable in complexity class CH (Counting Hierarchy).

• Bürgisser proved (in 2000) that if VP = VNP and GRH, then
CH = P/poly. This means,

(d
e
)

are computable in P/poly.

• Using Valiant’s Criterion, {Pk,n}k ∈ VNP = VP.

23



GRH and VP = VNP =⇒ {Pk,n}k ∈ VP

• One can write Pk,n (x) as

Pk,n (x) =
∑

e∈[0,c]k

(
d
e

)
· xe

•
(d
e
)

are computable in complexity class CH (Counting Hierarchy).

• Bürgisser proved (in 2000) that if VP = VNP and GRH, then
CH = P/poly. This means,

(d
e
)

are computable in P/poly.

• Using Valiant’s Criterion, {Pk,n}k ∈ VNP = VP.

23



GRH and VP = VNP =⇒ {Pk,n}k ∈ VP

• One can write Pk,n (x) as

Pk,n (x) =
∑

e∈[0,c]k

(
d
e

)
· xe

•
(d
e
)

are computable in complexity class CH (Counting Hierarchy).

• Bürgisser proved (in 2000) that if VP = VNP and GRH, then
CH = P/poly. This means,

(d
e
)

are computable in P/poly.

• Using Valiant’s Criterion, {Pk,n}k ∈ VNP = VP.

23



From C1 to {Pk,n}k ∉ VP

• Assume size(Pk,n) ≤ d1/𝜇; where 𝜇 depends on r, 𝛿1, 𝛿2, fixed later.

• We know, using the derived CNF, Pk,n can be written as

Pk,n =
poly(d1/𝜇 ,kn)∑

i=1
c′i · g̃r

i

where deg(g̃i) ≤ kn/4.

• Direct counting argument shows:
�� ⋃

i supp(g̃i)
�� ≤ (k+kn/4

k
)
.

• Let 𝜙 be the Kronecker map 𝜙 : xi ↦→ x (n+1) i−1 for i ∈ [k]. Then,

fd = 𝜙(Pk,n) =
poly(d1/𝜇 ,kn)∑

i=1
c′i · 𝜙(g̃i)r

• 𝜙 cannot increase the union-support or the top fan-in.

24



From C1 to {Pk,n}k ∉ VP

• Assume size(Pk,n) ≤ d1/𝜇; where 𝜇 depends on r, 𝛿1, 𝛿2, fixed later.

• We know, using the derived CNF, Pk,n can be written as

Pk,n =
poly(d1/𝜇 ,kn)∑

i=1
c′i · g̃r

i

where deg(g̃i) ≤ kn/4.

• Direct counting argument shows:
�� ⋃

i supp(g̃i)
�� ≤ (k+kn/4

k
)
.

• Let 𝜙 be the Kronecker map 𝜙 : xi ↦→ x (n+1) i−1 for i ∈ [k]. Then,

fd = 𝜙(Pk,n) =
poly(d1/𝜇 ,kn)∑

i=1
c′i · 𝜙(g̃i)r

• 𝜙 cannot increase the union-support or the top fan-in.

24



From C1 to {Pk,n}k ∉ VP

• Assume size(Pk,n) ≤ d1/𝜇; where 𝜇 depends on r, 𝛿1, 𝛿2, fixed later.

• We know, using the derived CNF, Pk,n can be written as

Pk,n =
poly(d1/𝜇 ,kn)∑

i=1
c′i · g̃r

i

where deg(g̃i) ≤ kn/4.

• Direct counting argument shows:
�� ⋃

i supp(g̃i)
�� ≤ (k+kn/4

k
)
.

• Let 𝜙 be the Kronecker map 𝜙 : xi ↦→ x (n+1) i−1 for i ∈ [k]. Then,

fd = 𝜙(Pk,n) =
poly(d1/𝜇 ,kn)∑

i=1
c′i · 𝜙(g̃i)r

• 𝜙 cannot increase the union-support or the top fan-in.

24



From C1 to {Pk,n}k ∉ VP

• Assume size(Pk,n) ≤ d1/𝜇; where 𝜇 depends on r, 𝛿1, 𝛿2, fixed later.

• We know, using the derived CNF, Pk,n can be written as

Pk,n =
poly(d1/𝜇 ,kn)∑

i=1
c′i · g̃r

i

where deg(g̃i) ≤ kn/4.

• Direct counting argument shows:
�� ⋃

i supp(g̃i)
�� ≤ (k+kn/4

k
)
.

• Let 𝜙 be the Kronecker map 𝜙 : xi ↦→ x (n+1) i−1 for i ∈ [k]. Then,

fd = 𝜙(Pk,n) =
poly(d1/𝜇 ,kn)∑

i=1
c′i · 𝜙(g̃i)r

• 𝜙 cannot increase the union-support or the top fan-in.

24



From C1 to {Pk,n}k ∉ VP

• Assume size(Pk,n) ≤ d1/𝜇; where 𝜇 depends on r, 𝛿1, 𝛿2, fixed later.

• We know, using the derived CNF, Pk,n can be written as

Pk,n =
poly(d1/𝜇 ,kn)∑

i=1
c′i · g̃r

i

where deg(g̃i) ≤ kn/4.

• Direct counting argument shows:
�� ⋃

i supp(g̃i)
�� ≤ (k+kn/4

k
)
.

• Let 𝜙 be the Kronecker map 𝜙 : xi ↦→ x (n+1) i−1 for i ∈ [k]. Then,

fd = 𝜙(Pk,n) =
poly(d1/𝜇 ,kn)∑

i=1
c′i · 𝜙(g̃i)r

• 𝜙 cannot increase the union-support or the top fan-in.

24



From C1 to {Pk,n}k ∉ VP

• Assume size(Pk,n) ≤ d1/𝜇; where 𝜇 depends on r, 𝛿1, 𝛿2, fixed later.

• We know, using the derived CNF, Pk,n can be written as

Pk,n =
poly(d1/𝜇 ,kn)∑

i=1
c′i · g̃r

i

where deg(g̃i) ≤ kn/4.

• Direct counting argument shows:
�� ⋃

i supp(g̃i)
�� ≤ (k+kn/4

k
)
.

• Let 𝜙 be the Kronecker map 𝜙 : xi ↦→ x (n+1) i−1 for i ∈ [k]. Then,

fd = 𝜙(Pk,n) =
poly(d1/𝜇 ,kn)∑

i=1
c′i · 𝜙(g̃i)r

• 𝜙 cannot increase the union-support or the top fan-in.

24



Finishing Theorem 2

• fd has sum of r-th power representation with top fan-in
s0 := poly(d1/𝜇, kn) and support-union at most s1 :=

(k+kn/4
k

)
.

• This means, in notation: UF (fd , r, s0) ≤ s1.

• Choose 𝜇 appropriately so that s0 ≤ d 𝛿1 and s1 < d/r 𝛿2 .

• This means, UF (fd , r, d 𝛿1 ) < d/r 𝛿2 for infinitely many d ∈ Ir , a
contradiction!

• Pk,n is exponentially hard i.e. size(Pk,n) ≥ d1/𝜇 = 2Ω(n) . Thus, it
cannot be in VP.

• Instead of 25-CNF, we could have used 5-CNF, then s1 :=
(k+kn/2

k
)

which is > d. Thus, r ≥ 25 is required!

25



Finishing Theorem 2

• fd has sum of r-th power representation with top fan-in
s0 := poly(d1/𝜇, kn) and support-union at most s1 :=

(k+kn/4
k

)
.

• This means, in notation: UF (fd , r, s0) ≤ s1.

• Choose 𝜇 appropriately so that s0 ≤ d 𝛿1 and s1 < d/r 𝛿2 .

• This means, UF (fd , r, d 𝛿1 ) < d/r 𝛿2 for infinitely many d ∈ Ir , a
contradiction!

• Pk,n is exponentially hard i.e. size(Pk,n) ≥ d1/𝜇 = 2Ω(n) . Thus, it
cannot be in VP.

• Instead of 25-CNF, we could have used 5-CNF, then s1 :=
(k+kn/2

k
)

which is > d. Thus, r ≥ 25 is required!

25



Finishing Theorem 2

• fd has sum of r-th power representation with top fan-in
s0 := poly(d1/𝜇, kn) and support-union at most s1 :=

(k+kn/4
k

)
.

• This means, in notation: UF (fd , r, s0) ≤ s1.

• Choose 𝜇 appropriately so that s0 ≤ d 𝛿1 and s1 < d/r 𝛿2 .

• This means, UF (fd , r, d 𝛿1 ) < d/r 𝛿2 for infinitely many d ∈ Ir , a
contradiction!

• Pk,n is exponentially hard i.e. size(Pk,n) ≥ d1/𝜇 = 2Ω(n) . Thus, it
cannot be in VP.

• Instead of 25-CNF, we could have used 5-CNF, then s1 :=
(k+kn/2

k
)

which is > d. Thus, r ≥ 25 is required!

25



Finishing Theorem 2

• fd has sum of r-th power representation with top fan-in
s0 := poly(d1/𝜇, kn) and support-union at most s1 :=

(k+kn/4
k

)
.

• This means, in notation: UF (fd , r, s0) ≤ s1.

• Choose 𝜇 appropriately so that s0 ≤ d 𝛿1 and s1 < d/r 𝛿2 .

• This means, UF (fd , r, d 𝛿1 ) < d/r 𝛿2 for infinitely many d ∈ Ir , a
contradiction!

• Pk,n is exponentially hard i.e. size(Pk,n) ≥ d1/𝜇 = 2Ω(n) . Thus, it
cannot be in VP.

• Instead of 25-CNF, we could have used 5-CNF, then s1 :=
(k+kn/2

k
)

which is > d. Thus, r ≥ 25 is required!

25



Finishing Theorem 2

• fd has sum of r-th power representation with top fan-in
s0 := poly(d1/𝜇, kn) and support-union at most s1 :=

(k+kn/4
k

)
.

• This means, in notation: UF (fd , r, s0) ≤ s1.

• Choose 𝜇 appropriately so that s0 ≤ d 𝛿1 and s1 < d/r 𝛿2 .

• This means, UF (fd , r, d 𝛿1 ) < d/r 𝛿2 for infinitely many d ∈ Ir , a
contradiction!

• Pk,n is exponentially hard i.e. size(Pk,n) ≥ d1/𝜇 = 2Ω(n) . Thus, it
cannot be in VP.

• Instead of 25-CNF, we could have used 5-CNF, then s1 :=
(k+kn/2

k
)

which is > d. Thus, r ≥ 25 is required!

25



Finishing Theorem 2

• fd has sum of r-th power representation with top fan-in
s0 := poly(d1/𝜇, kn) and support-union at most s1 :=

(k+kn/4
k

)
.

• This means, in notation: UF (fd , r, s0) ≤ s1.

• Choose 𝜇 appropriately so that s0 ≤ d 𝛿1 and s1 < d/r 𝛿2 .

• This means, UF (fd , r, d 𝛿1 ) < d/r 𝛿2 for infinitely many d ∈ Ir , a
contradiction!

• Pk,n is exponentially hard i.e. size(Pk,n) ≥ d1/𝜇 = 2Ω(n) . Thus, it
cannot be in VP.

• Instead of 25-CNF, we could have used 5-CNF, then s1 :=
(k+kn/2

k
)

which is > d. Thus, r ≥ 25 is required!

25



Conclusion



Conclusion

• We showed that for r = 2, Conjecture C1 implies matrix rigidity. Could
we solve the conjecture for special cases like constant some of powers?

• Is C1 true for random f over Q? over C?

• Can we improve the exponent 25? Very recently, Dutta and Saxena
improved 25 to 4. Can we improve further to 3 (or 2)?

• Can we remove GRH for (x + 1)d?

• Be ambitious. Prove Conjecture C1!

#StaySafe

26



Conclusion

• We showed that for r = 2, Conjecture C1 implies matrix rigidity.

Could
we solve the conjecture for special cases like constant some of powers?

• Is C1 true for random f over Q? over C?

• Can we improve the exponent 25? Very recently, Dutta and Saxena
improved 25 to 4. Can we improve further to 3 (or 2)?

• Can we remove GRH for (x + 1)d?

• Be ambitious. Prove Conjecture C1!

#StaySafe

26



Conclusion

• We showed that for r = 2, Conjecture C1 implies matrix rigidity. Could
we solve the conjecture for special cases like constant some of powers?

• Is C1 true for random f over Q? over C?

• Can we improve the exponent 25? Very recently, Dutta and Saxena
improved 25 to 4. Can we improve further to 3 (or 2)?

• Can we remove GRH for (x + 1)d?

• Be ambitious. Prove Conjecture C1!

#StaySafe

26



Conclusion

• We showed that for r = 2, Conjecture C1 implies matrix rigidity. Could
we solve the conjecture for special cases like constant some of powers?

• Is C1 true for random f over Q?

over C?

• Can we improve the exponent 25? Very recently, Dutta and Saxena
improved 25 to 4. Can we improve further to 3 (or 2)?

• Can we remove GRH for (x + 1)d?

• Be ambitious. Prove Conjecture C1!

#StaySafe

26



Conclusion

• We showed that for r = 2, Conjecture C1 implies matrix rigidity. Could
we solve the conjecture for special cases like constant some of powers?

• Is C1 true for random f over Q? over C?

• Can we improve the exponent 25? Very recently, Dutta and Saxena
improved 25 to 4. Can we improve further to 3 (or 2)?

• Can we remove GRH for (x + 1)d?

• Be ambitious. Prove Conjecture C1!

#StaySafe

26



Conclusion

• We showed that for r = 2, Conjecture C1 implies matrix rigidity. Could
we solve the conjecture for special cases like constant some of powers?

• Is C1 true for random f over Q? over C?

• Can we improve the exponent 25?

Very recently, Dutta and Saxena
improved 25 to 4. Can we improve further to 3 (or 2)?

• Can we remove GRH for (x + 1)d?

• Be ambitious. Prove Conjecture C1!

#StaySafe

26



Conclusion

• We showed that for r = 2, Conjecture C1 implies matrix rigidity. Could
we solve the conjecture for special cases like constant some of powers?

• Is C1 true for random f over Q? over C?

• Can we improve the exponent 25? Very recently, Dutta and Saxena
improved 25 to 4.

Can we improve further to 3 (or 2)?

• Can we remove GRH for (x + 1)d?

• Be ambitious. Prove Conjecture C1!

#StaySafe

26



Conclusion

• We showed that for r = 2, Conjecture C1 implies matrix rigidity. Could
we solve the conjecture for special cases like constant some of powers?

• Is C1 true for random f over Q? over C?

• Can we improve the exponent 25? Very recently, Dutta and Saxena
improved 25 to 4. Can we improve further to 3 (or 2)?

• Can we remove GRH for (x + 1)d?

• Be ambitious. Prove Conjecture C1!

#StaySafe

26



Conclusion

• We showed that for r = 2, Conjecture C1 implies matrix rigidity. Could
we solve the conjecture for special cases like constant some of powers?

• Is C1 true for random f over Q? over C?

• Can we improve the exponent 25? Very recently, Dutta and Saxena
improved 25 to 4. Can we improve further to 3 (or 2)?

• Can we remove GRH for (x + 1)d?

• Be ambitious. Prove Conjecture C1!

#StaySafe

26



Conclusion

• We showed that for r = 2, Conjecture C1 implies matrix rigidity. Could
we solve the conjecture for special cases like constant some of powers?

• Is C1 true for random f over Q? over C?

• Can we improve the exponent 25? Very recently, Dutta and Saxena
improved 25 to 4. Can we improve further to 3 (or 2)?

• Can we remove GRH for (x + 1)d?

• Be ambitious. Prove Conjecture C1!

#StaySafe

26



Conclusion

• We showed that for r = 2, Conjecture C1 implies matrix rigidity. Could
we solve the conjecture for special cases like constant some of powers?

• Is C1 true for random f over Q? over C?

• Can we improve the exponent 25? Very recently, Dutta and Saxena
improved 25 to 4. Can we improve further to 3 (or 2)?

• Can we remove GRH for (x + 1)d?

• Be ambitious. Prove Conjecture C1!

#StaySafe

26


	Introduction
	Conjecture C1 and Algebraic Complexity
	Circuit Normal Form (CNF) and Algebraic Complexity
	Proof Idea of Main Theorems
	Conclusion

