Lower bounds on the sum of $25^{\text {th }}$-powers of univariates lead to complete derandomization of PIT

Pranjal Dutta (CMI \& IIT Kanpur) Nitin Saxena (IIT Kanpur)
Thomas Thierauf (Aalen University)
SIGTACS Webinar @CSE, IITK

Table of contents

1. Introduction
2. Conjecture C 1 and Algebraic Complexity
3. Circuit Normal Form (CNF) and Algebraic Complexity
4. Proof Idea of Main Theorems
5. Conclusion

Introduction

Sum of $r^{\text {th }}$-powers

For a univariate polynomial $f(x) \in \mathbb{F}[x]$ over a field \mathbb{F}, and a positive integer r, we say that f is computed as a sum of $r^{\text {th }}$-powers, if

Sum of $r^{\text {th }}$-powers

For a univariate polynomial $f(x) \in \mathbb{F}[x]$ over a field \mathbb{F}, and a positive integer r, we say that f is computed as a sum of $r^{\text {th }}$-powers, if

$$
\begin{equation*}
f=\sum_{i=1}^{s} c_{i} \cdot \ell_{i}^{r}, \tag{1}
\end{equation*}
$$

for some $s \geq 1, c_{i} \in \mathbb{F}$ and $\ell_{i}(x) \in \mathbb{F}[x]$.

Sum of $r^{\text {th }}$-powers

For a univariate polynomial $f(x) \in \mathbb{F}[x]$ over a field \mathbb{F}, and a positive integer r, we say that f is computed as a sum of $r^{\text {th }}$-powers, if

$$
\begin{equation*}
f=\sum_{i=1}^{s} c_{i} \cdot l_{i}^{r} \tag{1}
\end{equation*}
$$

for some $s \geq 1, c_{i} \in \mathbb{F}$ and $\ell_{i}(x) \in \mathbb{F}[x]$.

- The sum of $r^{\text {th }}$-powers is a complete model (for large enough \mathbb{F}).

Sum of $r^{\text {th }}$-powers

For a univariate polynomial $f(x) \in \mathbb{F}[x]$ over a field \mathbb{F}, and a positive integer r, we say that f is computed as a sum of $r^{\text {th }}$-powers, if

$$
\begin{equation*}
f=\sum_{i=1}^{s} c_{i} \cdot \ell_{i}^{r}, \tag{1}
\end{equation*}
$$

for some $s \geq 1, c_{i} \in \mathbb{F}$ and $\ell_{i}(x) \in \mathbb{F}[x]$.

- The sum of $r^{\text {th }}$-powers is a complete model (for large enough \mathbb{F}). Because, for any distinct λ_{i}, there are $c_{i} \in \mathbb{F}$ such that

$$
f(x)=\sum_{i=0}^{r} c_{i} \cdot\left(f(x)+\lambda_{i}\right)^{r}
$$

Sum of $r^{\text {th }}$-powers

For a univariate polynomial $f(x) \in \mathbb{F}[x]$ over a field \mathbb{F}, and a positive integer r, we say that f is computed as a sum of $r^{\text {th }}$-powers, if

$$
\begin{equation*}
f=\sum_{i=1}^{s} c_{i} \cdot \ell_{i}^{r}, \tag{1}
\end{equation*}
$$

for some $s \geq 1, c_{i} \in \mathbb{F}$ and $\ell_{i}(x) \in \mathbb{F}[x]$.

- The sum of $r^{\text {th }}$-powers is a complete model (for large enough \mathbb{F}). Because, for any distinct λ_{i}, there are $c_{i} \in \mathbb{F}$ such that

$$
f(x)=\sum_{i=0}^{r} c_{i} \cdot\left(f(x)+\lambda_{i}\right)^{r}
$$

- For a fixed f, r, s representation Eqn. (1) might not exist.

Sum of $r^{\text {th }}$-powers

For a univariate polynomial $f(x) \in \mathbb{F}[x]$ over a field \mathbb{F}, and a positive integer r, we say that f is computed as a sum of $r^{\text {th }}$-powers, if

$$
\begin{equation*}
f=\sum_{i=1}^{s} c_{i} \cdot \ell_{i}^{r}, \tag{1}
\end{equation*}
$$

for some $s \geq 1, c_{i} \in \mathbb{F}$ and $\ell_{i}(x) \in \mathbb{F}[x]$.

- The sum of $r^{\text {th }}$-powers is a complete model (for large enough \mathbb{F}). Because, for any distinct λ_{i}, there are $c_{i} \in \mathbb{F}$ such that

$$
f(x)=\sum_{i=0}^{r} c_{i} \cdot\left(f(x)+\lambda_{i}\right)^{r}
$$

- For a fixed f, r, s representation Eqn. (1) might not exist. Eg. $(x+1)^{r+1}=c_{1} \cdot \ell_{1}^{r}+c_{2} \cdot \ell_{2}^{r}$ is not possible!

New Measure

New Measure

- A natural complexity measure in (1) is the support-union size, namely the number of distinct monomials in the representation, $\left|\bigcup_{i=1}^{s} \operatorname{supp}\left(\ell_{i}\right)\right|$ where support $\operatorname{supp}(\ell)$ denotes the set of nonzero monomials in the polynomial ℓ.

New Measure

- A natural complexity measure in (1) is the support-union size, namely the number of distinct monomials in the representation, $\left|\bigcup_{i=1}^{s} \operatorname{supp}\left(\ell_{i}\right)\right|$ where support $\operatorname{supp}(\ell)$ denotes the set of nonzero monomials in the polynomial ℓ.

$$
\begin{aligned}
& \text { Eg. }(s=1) \text { Let }(x+1)^{d}=\ell_{1}^{r} \text { where } r \mid d \text {. So, } \ell_{1}=(x+1)^{d / r} \text {. Thus, } \\
& \operatorname{supp}\left(\ell_{1}\right)=\left\{x^{0}, \ldots, x^{d / r}\right\} \Longrightarrow\left|\operatorname{supp}\left(\ell_{1}\right)\right|=d / r+1 \text {. }
\end{aligned}
$$

New Measure

- A natural complexity measure in (1) is the support-union size, namely the number of distinct monomials in the representation, $\left|\bigcup_{i=1}^{s} \operatorname{supp}\left(\ell_{i}\right)\right|$ where support $\operatorname{supp}(\ell)$ denotes the set of nonzero monomials in the polynomial ℓ.
Eg. $(s=1)$ Let $(x+1)^{d}=\ell_{1}^{r}$ where $r \mid d$. So, $\ell_{1}=(x+1)^{d / r}$. Thus, $\operatorname{supp}\left(\ell_{1}\right)=\left\{x^{0}, \ldots, x^{d / r}\right\} \Longrightarrow\left|\operatorname{supp}\left(\ell_{1}\right)\right|=d / r+1$.
- The support-union size of f with respect to r and s, denoted $U_{\mathbb{F}}(f, r, s)$ is defined as the minimum support-union size when f is written in the form (1), and ∞, if no such representation exists.

New Measure

- A natural complexity measure in (1) is the support-union size, namely the number of distinct monomials in the representation, $\left|\bigcup_{i=1}^{s} \operatorname{supp}\left(\ell_{i}\right)\right|$ where support $\operatorname{supp}(\ell)$ denotes the set of nonzero monomials in the polynomial ℓ.
Eg. $(s=1)$ Let $(x+1)^{d}=\ell_{1}^{r}$ where $r \mid d$. So, $\ell_{1}=(x+1)^{d / r}$. Thus, $\operatorname{supp}\left(\ell_{1}\right)=\left\{x^{0}, \ldots, x^{d / r}\right\} \Longrightarrow\left|\operatorname{supp}\left(\ell_{1}\right)\right|=d / r+1$.
- The support-union size of f with respect to r and s, denoted $U_{\mathbb{F}}(f, r, s)$ is defined as the minimum support-union size when f is written in the form (1), and ∞, if no such representation exists.
- Observe: $\left|\operatorname{supp}\left(\ell^{r}\right)\right| \leq|\operatorname{supp}(\ell)|^{r}$ for $r \geq 1$.

New Measure

- A natural complexity measure in (1) is the support-union size, namely the number of distinct monomials in the representation, $\left|\bigcup_{i=1}^{s} \operatorname{supp}\left(\ell_{i}\right)\right|$ where support $\operatorname{supp}(\ell)$ denotes the set of nonzero monomials in the polynomial ℓ.
Eg. $(s=1)$ Let $(x+1)^{d}=\ell_{1}^{r}$ where $r \mid d$. So, $\ell_{1}=(x+1)^{d / r}$. Thus, $\operatorname{supp}\left(\ell_{1}\right)=\left\{x^{0}, \ldots, x^{d / r}\right\} \Longrightarrow\left|\operatorname{supp}\left(\ell_{1}\right)\right|=d / r+1$.
- The support-union size of f with respect to r and s, denoted $U_{\mathbb{F}}(f, r, s)$ is defined as the minimum support-union size when f is written in the form (1), and ∞, if no such representation exists.
- Observe: $\left|\operatorname{supp}\left(\ell^{r}\right)\right| \leq|\operatorname{supp}(\ell)|^{r}$ for $r \geq 1$. Thus, for all f, r, s :

$$
U_{\mathbb{F}}(f, r, s) \geq \Omega\left(|\operatorname{supp}(f)|^{1 / r}\right)
$$

Understanding $U\left((x+1)^{d}, r, \cdot\right)$

Understanding $U\left((x+1)^{d}, r, \cdot\right)$

Fix the notations: $f_{d}(x):=(x+1)^{d}$ and $\mathbb{F}=\mathbb{Q}$.

Understanding $U\left((x+1)^{d}, r, \cdot\right)$

Fix the notations: $f_{d}(x):=(x+1)^{d}$ and $\mathbb{F}=\mathbb{Q}$.
Question: What can we say about $U_{\mathbb{F}}\left(f_{d}, r, \cdot\right)$?

Understanding $U\left((x+1)^{d}, r, \cdot\right)$

Fix the notations: $f_{d}(x):=(x+1)^{d}$ and $\mathbb{F}=\mathbb{Q}$.
Question: What can we say about $U_{\mathbb{F}}\left(f_{d}, r, \cdot\right)$? Here are few observations:

- For $s=1$, if $r \mid d$, then we have $U_{\mathbb{F}}\left(f_{d}, r, 1\right)=d / r+1$

Understanding $U\left((x+1)^{d}, r, \cdot\right)$

Fix the notations: $f_{d}(x):=(x+1)^{d}$ and $\mathbb{F}=\mathbb{Q}$.
Question: What can we say about $U_{\mathbb{F}}\left(f_{d}, r, \cdot\right)$? Here are few observations:

- For $s=1$, if $r \mid d$, then we have $U_{\mathbb{F}}\left(f_{d}, r, 1\right)=d / r+1$
- For $s=2$, we show that $U_{\mathbb{F}}\left(f_{d}, r, 2\right) \geq d / r+1$.

Understanding $U\left((x+1)^{d}, r, \cdot\right)$

Fix the notations: $f_{d}(x):=(x+1)^{d}$ and $\mathbb{F}=\mathbb{Q}$.
Question: What can we say about $U_{\mathbb{F}}\left(f_{d}, r, \cdot\right)$? Here are few observations:

- For $s=1$, if $r \mid d$, then we have $U_{\mathbb{F}}\left(f_{d}, r, 1\right)=d / r+1$
- For $s=2$, we show that $U_{\mathbb{F}}\left(f_{d}, r, 2\right) \geq d / r+1$.
- (Small s). For $s=r+1$ and any d, we show that

$$
U_{\mathbb{F}}\left(f_{d}, r, r+1\right) \leq d / r+r \text {. }
$$

Understanding $U\left((x+1)^{d}, r, \cdot\right)$

Fix the notations: $f_{d}(x):=(x+1)^{d}$ and $\mathbb{F}=\mathbb{Q}$.
Question: What can we say about $\bigcup_{\mathbb{F}}\left(f_{d}, r, \cdot\right)$? Here are few observations:

- For $s=1$, if $r \mid d$, then we have $U_{\mathbb{F}}\left(f_{d}, r, 1\right)=d / r+1$
- For $s=2$, we show that $U_{\mathbb{F}}\left(f_{d}, r, 2\right) \geq d / r+1$.
- (Small s). For $s=r+1$ and any d, we show that

$$
U_{\mathbb{F}}\left(f_{d}, r, r+1\right) \leq d / r+r
$$

- (Large s). For $s \geq c \cdot(d+1)$ for $a n y c>r$, we show that

$$
U_{\mathbb{F}}\left(f_{d}, r, s\right) \leq O\left(d^{1 / r}\right)
$$

Understanding $U\left((x+1)^{d}, r, \cdot\right)$

Fix the notations: $f_{d}(x):=(x+1)^{d}$ and $\mathbb{F}=\mathbb{Q}$.
Question: What can we say about $\bigcup_{\mathbb{F}}\left(f_{d}, r, \cdot\right)$? Here are few observations:

- For $s=1$, if $r \mid d$, then we have $U_{\mathbb{F}}\left(f_{d}, r, 1\right)=d / r+1$.
- For $s=2$, we show that $U_{\mathbb{F}}\left(f_{d}, r, 2\right) \geq d / r+1$.
- (Small s). For $s=r+1$ and any d, we show that

$$
U_{\mathbb{F}}\left(f_{d}, r, r+1\right) \leq d / r+r
$$

- (Large s). For $s \geq c \cdot(d+1)$ for any $c>r$, we show that

$$
U_{\mathbb{F}}\left(f_{d}, r, s\right) \leq O\left(d^{1 / r}\right)
$$

Thus, for large s, we get $U_{\mathbb{F}}\left(f_{d}, r, s\right)=\Theta\left(d^{1 / r}\right)$, which resolves this case.

Support-union Conjecture

Support-union Conjecture

For technical reasons, we will restrict d to the domain

$$
I_{r}:=\left\{r^{m}-1 \mid m \in \mathbb{N}\right\} .
$$

Support-union Conjecture

For technical reasons, we will restrict d to the domain

$$
I_{r}:=\left\{r^{m}-1 \mid m \in \mathbb{N}\right\} .
$$

Motivated from the examples above, we could conjecture the following.

Support-union Conjecture

For technical reasons, we will restrict d to the domain

$$
I_{r}:=\left\{r^{m}-1 \mid m \in \mathbb{N}\right\} .
$$

Motivated from the examples above, we could conjecture the following.

Possible Conjecture 1

For $s \leq d$ and a constant prime-power r,

$$
U_{\mathbb{F}}\left(f_{d}, r, s\right) \geq d / r
$$

for all large enough $d \in I_{r}$.

Support-union Conjecture

For technical reasons, we will restrict d to the domain

$$
I_{r}:=\left\{r^{m}-1 \mid m \in \mathbb{N}\right\} .
$$

Motivated from the examples above, we could conjecture the following.

Possible Conjecture 2

For positive constant $\delta_{1} \leq 1$ and a constant prime-power r,

$$
U_{\mathbb{F}}\left(f_{d}, r, d^{\delta_{1}}\right) \geq d / r
$$

for all large enough $d \in I_{r}$.

Support-union Conjecture

For technical reasons, we will restrict d to the domain

$$
I_{r}:=\left\{r^{m}-1 \mid m \in \mathbb{N}\right\} .
$$

Motivated from the examples above, we conjecture the following.

Support-union Conjecture (C1)

For positive constants $\delta_{1} \leq 1, \delta_{2} \geq 1$ and a constant prime-power r,

$$
U_{\mathbb{F}}\left(f_{d}, r, d^{\delta_{1}}\right) \geq d / r^{\delta_{2}}
$$

for all large enough $d \in I_{r}$.

Support-union Conjecture

For technical reasons, we will restrict d to the domain

$$
I_{r}:=\left\{r^{m}-1 \mid m \in \mathbb{N}\right\} .
$$

Motivated from the examples above, we conjecture the following.

Support-union Conjecture (C1)

For positive constants $\delta_{1} \leq 1, \delta_{2} \geq 1$ and a constant prime-power r,

$$
U_{\mathbb{F}}\left(f_{d}, r, d^{\delta_{1}}\right) \geq d / r^{\delta_{2}}
$$

for all large enough $d \in I_{r}$.
There are other intricate polynomial families for which we suspect that C 1 is true; for e.g. $\prod_{i \in[d]}(x-i), \sum_{i=0}^{d} 2^{i^{2}} x^{i}$.

Support-union Conjecture

For technical reasons, we will restrict d to the domain

$$
I_{r}:=\left\{r^{m}-1 \mid m \in \mathbb{N}\right\} .
$$

Motivated from the examples above, we conjecture the following.

Support-union Conjecture (C1)

For positive constants $\delta_{1} \leq 1, \delta_{2} \geq 1$ and a constant prime-power r,

$$
U_{\mathbb{F}}\left(f_{d}, r, d^{\delta_{1}}\right) \geq d / r^{\delta_{2}}
$$

for all large enough $d \in I_{r}$.
There are other intricate polynomial families for which we suspect that C 1 is true; for e.g. $\prod_{i \in[d]}(x-i), \sum_{i=0}^{d} i^{2^{2}} x^{i}$.

Reason to choose f_{d} is that it is a very simple polynomial.

Conjecture C1 over \mathbb{Z} (Integer ring)

Conjecture C1 over \mathbb{Z} (Integer ring)

C1 over \mathbb{Z}

Conjecture C1 holds true over \mathbb{Z}.

Conjecture C1 over \mathbb{Z} (Integer ring)

C1 over \mathbb{Z}

Conjecture C1 holds true over \mathbb{Z}.

Proof.

If $r=p^{\ell}$ for some prime p and $\ell \in \mathbb{N}$, then for $d \in I_{r}$:

$$
\binom{d}{i} \equiv \pm 1 \bmod p \Longrightarrow\left|\operatorname{supp}\left(f_{d} \bmod p\right)\right|=d+1
$$

Conjecture C1 over \mathbb{Z} (Integer ring)

C1 over \mathbb{Z}

Conjecture C1 holds true over \mathbb{Z}.

Proof.

If $r=p^{\ell}$ for some prime p and $\ell \in \mathbb{N}$, then for $d \in I_{r}$:

$$
\binom{d}{i} \equiv \pm 1 \bmod p \Longrightarrow\left|\operatorname{supp}\left(f_{d} \bmod p\right)\right|=d+1
$$

Observe: $\ell_{i}(x)^{r} \equiv \ell_{i}\left(x^{r}\right) \bmod p$ and $\left|\bigcup_{i} \operatorname{supp}\left(\ell_{i}(x)\right)\right|=\left|\bigcup_{i} \operatorname{supp}\left(\ell_{i}\left(x^{r}\right)\right)\right|$.

Conjecture C1 over \mathbb{Z} (Integer ring)

C1 over \mathbb{Z}

Conjecture C1 holds true over \mathbb{Z}.

Proof.

If $r=p^{\ell}$ for some prime p and $\ell \in \mathbb{N}$, then for $d \in I_{r}$:

$$
\binom{d}{i} \equiv \pm 1 \bmod p \Longrightarrow\left|\operatorname{supp}\left(f_{d} \bmod p\right)\right|=d+1
$$

Observe: $\ell_{i}(x)^{r} \equiv \ell_{i}\left(x^{r}\right) \bmod p$ and $\left|\bigcup_{i} \operatorname{supp}\left(\ell_{i}(x)\right)\right|=\left|\bigcup_{i} \operatorname{supp}\left(\ell_{i}\left(x^{r}\right)\right)\right|$.

$$
f_{d}=\sum c_{i} \cdot \ell_{i}^{r}
$$

Conjecture C1 over \mathbb{Z} (Integer ring)

C1 over \mathbb{Z}

Conjecture C1 holds true over \mathbb{Z}.

Proof.

If $r=p^{\ell}$ for some prime p and $\ell \in \mathbb{N}$, then for $d \in I_{r}$:

$$
\binom{d}{i} \equiv \pm 1 \bmod p \Longrightarrow\left|\operatorname{supp}\left(f_{d} \bmod p\right)\right|=d+1
$$

Observe: $\ell_{i}(x)^{r} \equiv \ell_{i}\left(x^{r}\right) \bmod p$ and $\left|\bigcup_{i} \operatorname{supp}\left(\ell_{i}(x)\right)\right|=\left|\bigcup_{i} \operatorname{supp}\left(\ell_{i}\left(x^{r}\right)\right)\right|$.

$$
f_{d}=\sum c_{i} \cdot \ell_{i}^{r} \Longrightarrow f_{d} \bmod p=\sum c_{i} \cdot \ell_{i}\left(x^{r}\right) \bmod p
$$

Conjecture C1 over \mathbb{Z} (Integer ring)

C1 over \mathbb{Z}

Conjecture C1 holds true over \mathbb{Z}.

Proof.

If $r=p^{\ell}$ for some prime p and $\ell \in \mathbb{N}$, then for $d \in I_{r}$:

$$
\binom{d}{i} \equiv \pm 1 \bmod p \Longrightarrow\left|\operatorname{supp}\left(f_{d} \bmod p\right)\right|=d+1
$$

Observe: $\ell_{i}(x)^{r} \equiv \ell_{i}\left(x^{r}\right) \bmod p$ and $\left|\bigcup_{i} \operatorname{supp}\left(\ell_{i}(x)\right)\right|=\left|\bigcup_{i} \operatorname{supp}\left(\ell_{i}\left(x^{r}\right)\right)\right|$.

$$
\begin{aligned}
f_{d}=\sum c_{i} \cdot \ell_{i}^{r} & \Longrightarrow f_{d} \bmod p=\sum c_{i} \cdot \ell_{i}\left(x^{r}\right) \bmod p \\
& \Longrightarrow\left|\bigcup \operatorname{supp}\left(\ell_{i}\right)\right| \geq d+1
\end{aligned}
$$

Conjecture C1 over \mathbb{Z} (Integer ring)

C1 over \mathbb{Z}

Conjecture C1 holds true over \mathbb{Z}.

Proof.

If $r=p^{\ell}$ for some prime p and $\ell \in \mathbb{N}$, then for $d \in I_{r}$:

$$
\binom{d}{i} \equiv \pm 1 \bmod p \Longrightarrow\left|\operatorname{supp}\left(f_{d} \bmod p\right)\right|=d+1
$$

Observe: $\ell_{i}(x)^{r} \equiv \ell_{i}\left(x^{r}\right) \bmod p$ and $\left|\bigcup_{i} \operatorname{supp}\left(\ell_{i}(x)\right)\right|=\left|\bigcup_{i} \operatorname{supp}\left(\ell_{i}\left(x^{r}\right)\right)\right|$.

$$
\begin{aligned}
f_{d}=\sum c_{i} \cdot \ell_{i}^{r} & \Longrightarrow f_{d} \bmod p=\sum c_{i} \cdot \ell_{i}\left(x^{r}\right) \bmod p \\
& \Longrightarrow\left|\bigcup \operatorname{supp}\left(\ell_{i}\right)\right| \geq d+1 \\
& \Longrightarrow U_{\mathbb{Z}}\left(f_{d}, r, \cdot\right) \geq d+1>d / r^{\delta_{2}}
\end{aligned}
$$

Conjecture C1 and Algebraic Complexity

Arithmetic Circuits

Arithmetic Circuits

Arithmetic Circuits

Arithmetic Circuits

Two Important Questions

- Valiant's Hypothesis: Prove that symbolic perm n requires $n^{\omega(1)}$-size circuit.

VP vs. VNP

- Valiant's Hypothesis: Prove that symbolic perm ${ }_{n}$ requires $n^{\omega(1)}$-size circuit. An equivalent version is: Prove $\mathrm{VP} \neq \mathrm{VNP}$.

VP vs. VNP

- Valiant's Hypothesis: Prove that symbolic perm n requires $n^{\omega(1)}$-size circuit. An equivalent version is: Prove $\mathrm{VP} \neq \mathrm{VNP}$.
- VP : A family $\left\{f_{n}\right\}_{n} \in \mathrm{VP}$ (over \mathbb{F}) if f_{n} is a poly $(n$)-variate polynomial, of degree $\operatorname{poly}(n)$ over \mathbb{F}, computed by poly (n)-size circuit.

VP vs. VNP

- Valiant's Hypothesis: Prove that symbolic perm ${ }_{n}$ requires $n^{\omega(1)}$-size circuit. An equivalent version is: Prove $\mathrm{VP} \neq \mathrm{VNP}$.
- VP : A family $\left\{f_{n}\right\}_{n} \in \mathrm{VP}$ (over \mathbb{F}) if f_{n} is a poly (n)-variate polynomial, of degree poly (n) over \mathbb{F}, computed by poly (n)-size circuit.
- VNP : A family $\left\{f_{n}\right\}_{n} \in \operatorname{VNP}($ over $\mathbb{F})$ if $\exists\left\{g_{n}\right\}_{n} \in \operatorname{VP} \& t(n)=\operatorname{poly}(n)$:

$$
f_{n}(\bar{x})=\sum_{w \in\{0,1\}^{t(n)}} g_{n}(\bar{x}, w) \text {. }
$$

VP vs. VNP

- Valiant's Hypothesis: Prove that symbolic perm ${ }_{n}$ requires $n^{\omega(1)}$-size circuit. An equivalent version is: Prove $\mathrm{VP} \neq \mathrm{VNP}$.
- VP : A family $\left\{f_{n}\right\}_{n} \in \mathrm{VP}$ (over \mathbb{F}) if f_{n} is a poly (n)-variate polynomial, of degree $\operatorname{poly}(n)$ over \mathbb{F}, computed by poly (n)-size circuit.
- VNP : A family $\left\{f_{n}\right\}_{n} \in \operatorname{VNP}($ over $\mathbb{F})$ if $\exists\left\{g_{n}\right\}_{n} \in \operatorname{VP} \& t(n)=\operatorname{poly}(n)$:

$$
f_{n}(\bar{x})=\sum_{w \in\{0,1\}^{t(n)}} g_{n}(\bar{x}, w) \text {. }
$$

- $\left\{f_{n}\right\}_{n} \in \mathrm{VNP} \Longrightarrow f_{n}$ is explicit.

VP vs. VNP

- Valiant's Hypothesis: Prove that symbolic perm ${ }_{n}$ requires $n^{\omega(1)}$-size circuit. An equivalent version is: Prove $\mathrm{VP} \neq \mathrm{VNP}$.
- VP : A family $\left\{f_{n}\right\}_{n} \in \mathrm{VP}$ (over \mathbb{F}) if f_{n} is a poly (n)-variate polynomial, of degree poly (n) over \mathbb{F}, computed by poly (n)-size circuit.
- VNP : A family $\left\{f_{n}\right\}_{n} \in \operatorname{VNP}($ over $\mathbb{F})$ if $\exists\left\{g_{n}\right\}_{n} \in \operatorname{VP} \& t(n)=\operatorname{poly}(n)$:

$$
f_{n}(\bar{x})=\sum_{w \in\{0,1\}^{t(n)}} g_{n}(\bar{x}, w) \text {. }
$$

- $\left\{f_{n}\right\}_{n} \in \mathrm{VNP} \Longrightarrow f_{n}$ is explicit.
- Sufficient explicitness (Valiant's Criterion):

VP vs. VNP

- Valiant's Hypothesis: Prove that symbolic perm n requires $n^{\omega(1)}$-size circuit. An equivalent version is: Prove $V P \neq V N P$.
- VP : A family $\left\{f_{n}\right\}_{n} \in \mathrm{VP}$ (over $\left.\mathbb{F}\right)$ if f_{n} is a poly (n)-variate polynomial, of degree $\operatorname{poly}(n)$ over \mathbb{F}, computed by poly (n)-size circuit.
- VNP : A family $\left\{f_{n}\right\}_{n} \in \operatorname{VNP}($ over $\mathbb{F})$ if $\exists\left\{g_{n}\right\}_{n} \in \operatorname{VP} \& t(n)=\operatorname{poly}(n)$:

$$
f_{n}(\bar{x})=\sum_{w \in\{0,1\}^{t(n)}} g_{n}(\bar{x}, w)
$$

- $\left\{f_{n}\right\}_{n} \in \mathrm{VNP} \Longrightarrow f_{n}$ is explicit.
- Sufficient explicitness (Valiant's Criterion): Suppose $\phi:\{0,1\}^{*} \rightarrow \mathbb{N}$ is a function in the class P. Then, the family $\left\{f_{n}\right\}_{n} \in$ VNP if

$$
f_{n}(\bar{x})=\sum_{\boldsymbol{e} \in\{0,1\}^{n}} \phi(\boldsymbol{e}) \bar{x}^{\boldsymbol{e}}
$$

VP vs. VNP

- Valiant's Hypothesis: Prove that symbolic perm n requires $n^{\omega(1)}$-size circuit. An equivalent version is: Prove $V P \neq V N P$.
- VP : A family $\left\{f_{n}\right\}_{n} \in \mathrm{VP}$ (over $\left.\mathbb{F}\right)$ if f_{n} is a poly (n)-variate polynomial, of degree $\operatorname{poly}(n)$ over \mathbb{F}, computed by poly (n)-size circuit.
- VNP : A family $\left\{f_{n}\right\}_{n} \in \operatorname{VNP}($ over $\mathbb{F})$ if $\exists\left\{g_{n}\right\}_{n} \in \operatorname{VP} \& t(n)=\operatorname{poly}(n)$:

$$
f_{n}(\bar{x})=\sum_{w \in\{0,1\}^{t(n)}} g_{n}(\bar{x}, w)
$$

- $\left\{f_{n}\right\}_{n} \in \mathrm{VNP} \Longrightarrow f_{n}$ is explicit.
- Sufficient explicitness (Valiant's Criterion): Suppose $\phi:\{0,1\}^{*} \rightarrow \mathbb{N}$ is a function in the class $\mathrm{P} /$ poly. Then, the family $\left\{f_{n}\right\}_{n} \in$ VNP if

$$
f_{n}(\bar{x})=\sum_{\boldsymbol{e} \in\{0,1\}^{n}} \phi(\boldsymbol{e}) \bar{x}^{\boldsymbol{e}}
$$

VP vs. VNP

- Valiant's Hypothesis: Prove that symbolic perm n requires $n^{\omega(1)}$-size circuit. An equivalent version is: Prove $V P \neq V N P$.
- VP : A family $\left\{f_{n}\right\}_{n} \in \mathrm{VP}$ (over $\left.\mathbb{F}\right)$ if f_{n} is a poly (n)-variate polynomial, of degree $\operatorname{poly}(n)$ over \mathbb{F}, computed by poly (n)-size circuit.
- VNP : A family $\left\{f_{n}\right\}_{n} \in \operatorname{VNP}($ over $\mathbb{F})$ if $\exists\left\{g_{n}\right\}_{n} \in \operatorname{VP} \& t(n)=\operatorname{poly}(n)$:

$$
f_{n}(\bar{x})=\sum_{w \in\{0,1\}^{t(n)}} g_{n}(\bar{x}, w)
$$

- $\left\{f_{n}\right\}_{n} \in \mathrm{VNP} \Longrightarrow f_{n}$ is explicit.
- Sufficient explicitness (Valiant's Criterion): Suppose $\phi:[0, c]^{*} \rightarrow \mathbb{N}$ is a function in the class $\mathrm{P} /$ poly. Then, the family $\left\{f_{n}\right\}_{n} \in \mathrm{VNP}$ if

$$
f_{n}(\bar{x})=\sum_{\boldsymbol{e} \in[0, c]^{n}} \phi(\boldsymbol{e}) \bar{x}^{\boldsymbol{e}}
$$

Polynomial Identity Testing

Polynomial Identity Testing

- Polynomial Identity Testing (PIT): Given a circuit C, test whether C computes the zero polynomial (deterministically).

Polynomial Identity Testing

- Polynomial Identity Testing (PIT): Given a circuit C, test whether C computes the zero polynomial (deterministically).
- Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.

Polynomial Identity Testing

- Polynomial Identity Testing (PIT): Given a circuit C, test whether C computes the zero polynomial (deterministically).
- Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.
- Hitting sets: Find a set of points H such that any "small" circuit C that is computing a nonzero polynomial must satisfy $C(a) \neq 0$ for some $\boldsymbol{a} \in H$.

Polynomial Identity Testing

- Polynomial Identity Testing (PIT): Given a circuit C, test whether C computes the zero polynomial (deterministically).
- Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.
- Hitting sets: Find a set of points H such that any "small" circuit C that is computing a nonzero polynomial must satisfy $C(\boldsymbol{a}) \neq 0$ for some $\boldsymbol{a} \in H$.

Polynomial Identity Lemma (Ore, Demillo-Lipton, Schwartz, Zippel)

If $P(\bar{x})$ is a nonzero polynomial of degree d, and $S \subseteq \mathbb{F}$ of size at least $d+1$, then $P(\boldsymbol{a}) \neq 0$ for some $\boldsymbol{a} \in S^{n}$.

Polynomial Identity Testing

- Polynomial Identity Testing (PIT): Given a circuit C, test whether C computes the zero polynomial (deterministically).
- Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.
- Hitting sets: Find a set of points H such that any "small" circuit C that is computing a nonzero polynomial must satisfy $C(\boldsymbol{a}) \neq 0$ for some $\boldsymbol{a} \in H$.

Polynomial Identity Lemma (Ore, Demillo-Lipton, Schwartz, Zippel)

If $P(\bar{x})$ is a nonzero polynomial of degree d, and $S \subseteq \mathbb{F}$ of size at least $d+1$, then $P(\boldsymbol{a}) \neq 0$ for some $\boldsymbol{a} \in S^{n}$.

This above lemma puts PIT \in RP.

VP \neq VNP \& Efficient PIT

$$
\mathrm{VP} \neq \mathrm{VNP}
$$

Explicit Hitting Sets

VP \neq VNP \& Efficient PIT

VP \neq VNP \& Efficient PIT

VP \neq VNP \& Efficient PIT

VP \neq VNP \& Efficient PIT

KI03, AGS19

$$
\text { constant }(\geq 4) \text {-variate explicit hard polynomial }
$$

$$
f(x)=\sum_{i=1}^{s} Q_{i}^{e_{i}}, \operatorname{deg}\left(Q_{i}\right) \leq t \text { and } e_{i}=\omega(1) \Longrightarrow s \geq(d / t)^{\Omega(1)}
$$

VP \neq VNP \& Efficient PIT

Connecting Conjecture C1 to Algebraic Complexity

Conjecture C1 holds for an $r \geq 25$

Connecting Conjecture C1 to Algebraic Complexity

Connecting Conjecture C1 to Algebraic Complexity

Conjecture C 1 holds for an $r \geq 25$

Connecting Conjecture C1 to Algebraic Complexity

Conjecture C1 and Algebraic Complexity

Recall Conjecture C1.

Conjecture C1 and Algebraic Complexity

C1: $(x+1)^{d}=\sum_{i=1}^{d^{\delta_{1}}} \ell_{i}^{r} \Longrightarrow\left|\bigcup_{i} \operatorname{supp}\left(\ell_{i}\right)\right| \geq d / r^{\delta_{2}}=\Omega(d)$.

Conjecture C1 and Algebraic Complexity

$$
\mathrm{C} 1:(x+1)^{d}=\sum_{i=1}^{d^{\delta_{1}}} \ell_{i}^{r} \Longrightarrow\left|\bigcup_{i} \operatorname{supp}\left(\ell_{i}\right)\right| \geq d / r^{\delta_{2}}=\Omega(d) \text {. }
$$

Theorem 1: Conjecture C1 to PIT

If Conjecture C 1 holds for an $r \geq 25$, then blackbox-PIT $\in \mathrm{P}$.

Conjecture C1 and Algebraic Complexity

$$
\mathrm{C} 1:(x+1)^{d}=\sum_{i=1}^{d^{\delta_{1}}} e_{i}^{r} \Longrightarrow\left|\bigcup_{i} \operatorname{supp}\left(\ell_{i}\right)\right| \geq d / r^{\delta_{2}}=\Omega(d) \text {. }
$$

Theorem 1: Conjecture C1 to PIT

If Conjecture C 1 holds for an $r \geq 25$, then blackbox-PIT $\in \mathrm{P}$.

Theorem 2: Conjecture C1 to VP \neq VNP

Assume GRH, and Conjecture C1 holds for an $r \geq 25$, then VP $\neq \mathrm{VNP}$.

Conjecture C1 and Algebraic Complexity

Theorem 1: Conjecture C1 to PIT

If Conjecture C 1 holds for an $r \geq 25$, then blackbox-PIT $\in \mathrm{P}$.

Theorem 2: Conjecture C1 to VP \neq VNP

Assume GRH, and Conjecture C1 holds for an $r \geq 25$, then VP $\neq \mathrm{VNP}$.

Theorem 2 is reminiscent to the following:

Conjecture C1 and Algebraic Complexity

Theorem 1: Conjecture C1 to PIT

If Conjecture C 1 holds for an $r \geq 25$, then blackbox-PIT $\in \mathrm{P}$.

Theorem 2: Conjecture C1 to VP \neq VNP

Assume GRH, and Conjecture C1 holds for an $r \geq 25$, then VP $\neq \mathrm{VNP}$.
Theorem 2 is reminiscent to the following:
Strong lower bound on sum-of-squares in non-commutative settings implies Permanent is hard [HWY11].

More on Conjecture C1 and Theorem 1-2

More on Conjecture C1 and Theorem 1-2

- There are other candidate polynomials for C 1 , for eg. $\prod_{i \in[d]}(x-i)$, $\sum_{i=0}^{d} i^{2^{2}} x^{i} . \mathrm{C} 1$ holds for them implies Theorem $1 \& 2$.

More on Conjecture C1 and Theorem 1-2

- There are other candidate polynomials for C 1 , for eg. $\prod_{i \in[d]}(x-i)$, $\sum_{i=0}^{d} i^{2^{2}} x^{i} . \mathrm{C} 1$ holds for them implies Theorem $1 \& 2$.
- C1 holds for $\sum_{i=0}^{d} 2^{i^{2}} x^{i}$ implies VP \neq VNP without GRH!

More on Conjecture C1 and Theorem 1-2

- There are other candidate polynomials for C 1 , for eg. $\prod_{i \in[d]}(x-i)$, $\sum_{i=0}^{d} 2^{2^{2}} x^{i} . \mathrm{C} 1$ holds for them implies Theorem $1 \& 2$.
- C1 holds for $\sum_{i=0}^{d} 2^{i^{2}} x^{i}$ implies VP \neq VNP without GRH!
- It is enough to consider poly-degree restriction on ℓ_{i}. In fact, for Theorem 1, we can assume $\operatorname{deg}\left(\ell_{i}\right)=O(d)$ while for Theorem 2, we can assume $\operatorname{deg}\left(\ell_{i}\right)=O(d \log d)$.

More on Conjecture C1 and Theorem 1-2

- There are other candidate polynomials for C 1 , for eg. $\prod_{i \in[d]}(x-i)$, $\sum_{i=0}^{d} 2^{2^{2}} x^{i} . \mathrm{C} 1$ holds for them implies Theorem $1 \& 2$.
- C1 holds for $\sum_{i=0}^{d} 2^{i^{2}} x^{i}$ implies VP \neq VNP without GRH!
- It is enough to consider poly-degree restriction on ℓ_{i}. In fact, for Theorem 1, we can assume $\operatorname{deg}\left(\ell_{i}\right)=O(d)$ while for Theorem 2, we can assume $\operatorname{deg}\left(\ell_{i}\right)=O(d \log d)$.
- There is a relaxed version of C 1 where, instead of the measure $\left|\cup \operatorname{supp}\left(\ell_{i}\right)\right|$, we look at $\sum_{i}\left|\operatorname{supp}\left(\ell_{i}\right)\right|$.

More on Conjecture C1 and Theorem 1-2

- There are other candidate polynomials for C 1 , for eg. $\prod_{i \in[d]}(x-i)$, $\sum_{i=0}^{d} i^{2^{2}} x^{i} . \mathrm{C} 1$ holds for them implies Theorem $1 \& 2$.
- C1 holds for $\sum_{i=0}^{d} 2^{i^{2}} x^{i}$ implies VP \neq VNP without GRH!
- It is enough to consider poly-degree restriction on ℓ_{i}. In fact, for Theorem 1, we can assume $\operatorname{deg}\left(\ell_{i}\right)=O(d)$ while for Theorem 2, we can assume $\operatorname{deg}\left(\ell_{i}\right)=O(d \log d)$.
- There is a relaxed version of C 1 where, instead of the measure $\left|\cup \operatorname{supp}\left(\ell_{i}\right)\right|$, we look at $\sum_{i}\left|\operatorname{supp}\left(\ell_{i}\right)\right|$.
- We call it $S_{\mathbb{F}}(f, r, s)$. Trivially, $U_{\mathbb{F}}(f, r, s) \leq S_{\mathbb{F}}(f, r, s)$.

More on Conjecture C1 and Theorem 1-2

- There are other candidate polynomials for C 1 , for eg. $\prod_{i \in[d]}(x-i)$, $\sum_{i=0}^{d} i^{2^{2}} x^{i} . \mathrm{C} 1$ holds for them implies Theorem $1 \& 2$.
- C1 holds for $\sum_{i=0}^{d} 2^{i^{2}} x^{i}$ implies VP \neq VNP without GRH!
- It is enough to consider poly-degree restriction on ℓ_{i}. In fact, for Theorem 1, we can assume $\operatorname{deg}\left(\ell_{i}\right)=O(d)$ while for Theorem 2, we can assume $\operatorname{deg}\left(\ell_{i}\right)=O(d \log d)$.
- There is a relaxed version of C 1 where, instead of the measure $\left|\cup \operatorname{supp}\left(\ell_{i}\right)\right|$, we look at $\sum_{i}\left|\operatorname{supp}\left(\ell_{i}\right)\right|$.
- We call it $S_{\mathbb{F}}(f, r, s)$. Trivially, $U_{\mathbb{F}}(f, r, s) \leq S_{\mathbb{F}}(f, r, s)$.
- We could similarly conjecture (C2) that $S_{\mathbb{F}}\left(f_{d}, r, \cdot\right)$ is large.

More on Conjecture C1 and Theorem 1-2

- There are other candidate polynomials for C 1 , for eg. $\prod_{i \in[d]}(x-i)$, $\sum_{i=0}^{d} i^{2^{2}} x^{i} . \mathrm{C} 1$ holds for them implies Theorem $1 \& 2$.
- C1 holds for $\sum_{i=0}^{d} 2^{i^{2}} x^{i}$ implies VP \neq VNP without GRH!
- It is enough to consider poly-degree restriction on ℓ_{i}. In fact, for Theorem 1, we can assume $\operatorname{deg}\left(\ell_{i}\right)=O(d)$ while for Theorem 2, we can assume $\operatorname{deg}\left(\ell_{i}\right)=O(d \log d)$.
- There is a relaxed version of C 1 where, instead of the measure $\left|\cup \operatorname{supp}\left(\ell_{i}\right)\right|$, we look at $\sum_{i}\left|\operatorname{supp}\left(\ell_{i}\right)\right|$.
- We call it $S_{\mathbb{F}}(f, r, s)$. Trivially, $U_{\mathbb{F}}(f, r, s) \leq S_{\mathbb{F}}(f, r, s)$.
- We could similarly conjecture (C2) that $S_{\mathbb{F}}\left(f_{d}, r, \cdot\right)$ is large.
- C 2 and GRH implies VP \neq VNP;

More on Conjecture C1 and Theorem 1-2

- There are other candidate polynomials for C 1 , for eg. $\prod_{i \in[d]}(x-i)$, $\sum_{i=0}^{d} i^{2^{2}} x^{i} . \mathrm{C} 1$ holds for them implies Theorem $1 \& 2$.
- C1 holds for $\sum_{i=0}^{d} 2^{i^{2}} x^{i}$ implies VP \neq VNP without GRH!
- It is enough to consider poly-degree restriction on ℓ_{i}. In fact, for Theorem 1, we can assume $\operatorname{deg}\left(\ell_{i}\right)=O(d)$ while for Theorem 2, we can assume $\operatorname{deg}\left(\ell_{i}\right)=O(d \log d)$.
- There is a relaxed version of C 1 where, instead of the measure $\left|\cup \operatorname{supp}\left(\ell_{i}\right)\right|$, we look at $\sum_{i}\left|\operatorname{supp}\left(\ell_{i}\right)\right|$.
- We call it $S_{\mathbb{F}}(f, r, s)$. Trivially, $U_{\mathbb{F}}(f, r, s) \leq S_{\mathbb{F}}(f, r, s)$.
- We could similarly conjecture (C2) that $S_{\mathbb{F}}\left(f_{d}, r, \cdot\right)$ is large.
- C 2 and GRH implies VP $\neq V N P$; it's not clear whether it implies PIT $\in \mathrm{P}$.

Circuit Normal Form (CNF) and Algebraic Complexity

An Important CNF

An Important CNF

- It was established in [VSBR83, Sap19] that an n-variate, degree d polynomial $f(\bar{x})$, computed by a circuit of size s, can be decomposed as

An Important CNF

- It was established in [VSBR83, Sap19] that an n-variate, degree d polynomial $f(\bar{x})$, computed by a circuit of size s, can be decomposed as

$$
f(\bar{x})=\sum_{i=1}^{s^{\prime}} f_{i 1} \cdot f_{i 2} \cdot f_{i 3} \cdot f_{i 4} \cdot f_{i 5}
$$

An Important CNF

- It was established in [VSBR83, Sap19] that an n-variate, degree d polynomial $f(\bar{x})$, computed by a circuit of size s, can be decomposed as

$$
f(\bar{x})=\sum_{i=1}^{s^{\prime}} f_{i 1} \cdot f_{i 2} \cdot f_{i 3} \cdot f_{i 4} \cdot f_{i 5},
$$

where

1. top-fanin $s^{\prime}=\operatorname{poly}(s, d)$,

An Important CNF

- It was established in [VSBR83, Sap19] that an n-variate, degree d polynomial $f(\bar{x})$, computed by a circuit of size s, can be decomposed as

$$
f(\bar{x})=\sum_{i=1}^{s^{\prime}} f_{i 1} \cdot f_{i 2} \cdot f_{i 3} \cdot f_{i 4} \cdot f_{i 5},
$$

where

1. top-fanin $s^{\prime}=\operatorname{poly}(s, d)$,
2. where each $f_{i j}$ has circuit size at most poly (s, d)

An Important CNF

- It was established in [VSBR83, Sap19] that an n-variate, degree d polynomial $f(\bar{x})$, computed by a circuit of size s, can be decomposed as

$$
f(\bar{x})=\sum_{i=1}^{s^{\prime}} f_{i 1} \cdot f_{i 2} \cdot f_{i 3} \cdot f_{i 4} \cdot f_{i 5}
$$

where

1. top-fanin $s^{\prime}=\operatorname{poly}(s, d)$,
2. where each $f_{i j}$ has circuit size at most $\operatorname{poly}(s, d)$
3. $\operatorname{deg}\left(f_{i j}\right) \leq d / 2$, for all i, j.

An Important CNF

- It was established in [VSBR83, Sap19] that an n-variate, degree d polynomial $f(\bar{x})$, computed by a circuit of size s, can be decomposed as

$$
f(\bar{x})=\sum_{i=1}^{s^{\prime}} f_{i 1} \cdot f_{i 2} \cdot f_{i 3} \cdot f_{i 4} \cdot f_{i 5},
$$

where

1. top-fanin $s^{\prime}=\operatorname{poly}(s, d)$,
2. where each $f_{i j}$ has circuit size at most poly (s, d)
3. $\operatorname{deg}\left(f_{i j}\right) \leq d / 2$, for all i, j.

- This circuit normal-form (CNF) has played a key role in all recent depth-reduction results [AV08, Koi12, GKKS13, Tav15].

CNF to sum of 25-product

CNF to sum of 25-product

Given d-degree $f(\bar{x})$, computed by size-s circuit, we decompose f as

$$
f(\bar{x})=\sum_{i=1}^{\operatorname{poly}(s, d)} f_{i 1} \cdot f_{i 2} \cdot f_{i 3} \cdot f_{i 4} \cdot f_{i 5}
$$

CNF to sum of 25-product

Given d-degree $f(\bar{x})$, computed by size-s circuit, we decompose f as

$$
f(\bar{x})=\sum_{i=1}^{\operatorname{poly}(s, d)} f_{i 1} \cdot f_{i 2} \cdot f_{i 3} \cdot f_{i 4} \cdot f_{i 5}
$$

$\operatorname{size}\left(f_{i j}\right)=\operatorname{poly}(s, d)$ and $\operatorname{deg}\left(f_{i j}\right) \leq d / 2$.

CNF to sum of 25-product

Given d-degree $f(\bar{x})$, computed by size-s circuit, we decompose f as

$$
f(\bar{x})=\sum_{i=1}^{\text {poly }(s, d)} f_{i 1} \cdot f_{i 2} \cdot f_{i 3} \cdot f_{i 4} \cdot f_{i 5}
$$

$\operatorname{size}\left(f_{i j}\right)=\operatorname{poly}(s, d)$ and $\operatorname{deg}\left(f_{i j}\right) \leq d / 2$. Apply CNF to each of $f_{i j}$ to get:

CNF to sum of 25-product

Given d-degree $f(\bar{x})$, computed by size-s circuit, we decompose f as

$$
f(\bar{x})=\sum_{i=1}^{\text {poly }(s, d)} f_{i 1} \cdot f_{i 2} \cdot f_{i 3} \cdot f_{i 4} \cdot f_{i 5}
$$

$\operatorname{size}\left(f_{i j}\right)=\operatorname{poly}(s, d)$ and $\operatorname{deg}\left(f_{i j}\right) \leq d / 2$. Apply CNF to each of $f_{i j}$ to get:

$$
f(\bar{x})=\sum_{i=1}^{\operatorname{poly}(s, d)} \prod_{j=1}^{5} f_{i j}
$$

CNF to sum of 25-product

Given d-degree $f(\bar{x})$, computed by size-s circuit, we decompose f as

$$
f(\bar{x})=\sum_{i=1}^{\text {poly }(s, d)} f_{i 1} \cdot f_{i 2} \cdot f_{i 3} \cdot f_{i 4} \cdot f_{i 5}
$$

$\operatorname{size}\left(f_{i j}\right)=\operatorname{poly}(s, d)$ and $\operatorname{deg}\left(f_{i j}\right) \leq d / 2$. Apply CNF to each of $f_{i j}$ to get:

$$
\begin{aligned}
f(\bar{x}) & =\sum_{i=1}^{\operatorname{poly}(s, d)} \prod_{j=1}^{5} f_{i j} \\
& =\sum_{i=1}^{\operatorname{poly}(s, d)} \prod_{j=1}^{5}\left(\sum_{k=1}^{\operatorname{poly}(s, d)} \prod_{l=1}^{5} f_{i j k l}\right)
\end{aligned}
$$

CNF to sum of 25-product

Given d-degree $f(\bar{x})$, computed by size-s circuit, we decompose f as

$$
f(\bar{x})=\sum_{i=1}^{\operatorname{poly}(s, d)} f_{i 1} \cdot f_{i 2} \cdot f_{i 3} \cdot f_{i 4} \cdot f_{i 5}
$$

$\operatorname{size}\left(f_{i j}\right)=\operatorname{poly}(s, d)$ and $\operatorname{deg}\left(f_{i j}\right) \leq d / 2$. Apply CNF to each of $f_{i j}$ to get:

$$
\begin{aligned}
f(\bar{x}) & =\sum_{i=1}^{\operatorname{poly}(s, d)} \prod_{j=1}^{5} f_{i j} \\
& =\sum_{i=1}^{\operatorname{poly}(s, d)} \prod_{j=1}^{5}\left(\sum_{k=1}^{\operatorname{poly}(s, d)} \prod_{l=1}^{5} f_{i j k l}\right) \\
& =\sum_{i=1}^{\operatorname{poly}(s, d)} \prod_{j=1}^{25} g_{i j}
\end{aligned}
$$

CNF to sum of 25-product

Given d-degree $f(\bar{x})$, computed by size-s circuit, we decompose f as

$$
f(\bar{x})=\sum_{i=1}^{\operatorname{poly}(s, d)} f_{i 1} \cdot f_{i 2} \cdot f_{i 3} \cdot f_{i 4} \cdot f_{i 5}
$$

$\operatorname{size}\left(f_{i j}\right)=\operatorname{poly}(s, d)$ and $\operatorname{deg}\left(f_{i j}\right) \leq d / 2$. Apply CNF to each of $f_{i j}$ to get:

$$
\begin{aligned}
& f(\bar{x})=\sum_{i=1}^{\operatorname{poly}(s, d)} \prod_{j=1}^{5} f_{i j} \\
&=\sum_{i=1}^{\operatorname{poly}(s, d)} \prod_{j=1}^{5}\left(\sum_{k=1}^{\operatorname{poly}(s, d)} \prod_{l=1}^{5} f_{i j k l}\right) \\
&=\sum_{i=1}^{\operatorname{poly}(s, d)} \prod_{j=1}^{25} g_{i j} \quad \\
& \cdots \sum^{a} \prod^{b} c
\end{aligned}
$$

CNF to sum of 25-product

Given d-degree $f(\bar{x})$, computed by size-s circuit, we decompose f as

$$
f(\bar{x})=\sum_{i=1}^{\operatorname{poly}(s, d)} f_{i 1} \cdot f_{i 2} \cdot f_{i 3} \cdot f_{i 4} \cdot f_{i 5}
$$

$\operatorname{size}\left(f_{i j}\right)=\operatorname{poly}(s, d)$ and $\operatorname{deg}\left(f_{i j}\right) \leq d / 2$. Apply CNF to each of $f_{i j}$ to get:

$$
\begin{aligned}
f(\bar{x}) & =\sum_{i=1}^{\operatorname{poly}(s, d)} \prod_{j=1}^{5} f_{i j} \\
& =\sum_{i=1}^{\operatorname{poly}(s, d)} \prod_{j=1}^{5}\left(\sum_{k=1}^{\operatorname{poly}(s, d)} \prod_{l=1}^{5} f_{i j k l}\right) \\
& =\sum_{i=1}^{\operatorname{poly}(s, d)} \prod_{j=1}^{25} g_{i j} \quad
\end{aligned}
$$

Note that $\operatorname{deg}\left(g_{i j}\right) \leq d / 4$.

CNF to sum of $25^{\text {th }}$-powers

CNF to sum of $25^{\text {th }}$-powers

Fischer's Trick (Fischer94)

\mathbb{F} be a field of characteristic 0 or $>m$. One can write $g=\prod_{i \in[m]} g_{i}$ as:

CNF to sum of $25^{\text {th }}$-powers

Fischer's Trick (Fischer94)

\mathbb{F} be a field of characteristic 0 or $>m$. One can write $g=\prod_{i \in[m]} g_{i}$ as:

$$
g=g_{1} \cdot g_{2} \cdot \ldots g_{m}=\sum_{j=1}^{2^{m}} c_{j} \cdot h_{j}^{m}
$$

where $c_{j} \in \mathbb{F}$ and $h_{j} \in \operatorname{span}_{\mathbb{F}}\left(g_{i} \mid i \in[m]\right)$, for $j \in\left[2^{m}\right]$.

CNF to sum of $25^{\text {th }}$-powers

Fischer's Trick (Fischer94)

\mathbb{F} be a field of characteristic 0 or $>m$. One can write $g=\prod_{i \in[m]} g_{i}$ as:

$$
g=g_{1} \cdot g_{2} \cdot \ldots g_{m}=\sum_{j=1}^{2^{m}} c_{j} \cdot h_{j}^{m}
$$

where $c_{j} \in \mathbb{F}$ and $h_{j} \in \operatorname{span}_{\mathbb{F}}\left(g_{i} \mid i \in[m]\right)$, for $j \in\left[2^{m}\right]$.
From previous slide, we expressed d-degree s-sized $f(\bar{x})=\sum \Pi g_{i j}$ with $\operatorname{deg}\left(g_{i j}\right) \leq d / 4$.

CNF to sum of $25^{\text {th }}$-powers

Fischer's Trick (Fischer94)

\mathbb{F} be a field of characteristic 0 or $>m$. One can write $g=\prod_{i \in[m]} g_{i}$ as:

$$
g=g_{1} \cdot g_{2} \cdot \ldots g_{m}=\sum_{j=1}^{2^{m}} c_{j} \cdot h_{j}^{m}
$$

where $c_{j} \in \mathbb{F}$ and $h_{j} \in \operatorname{span}_{\mathbb{F}}\left(g_{i} \mid i \in[m]\right)$, for $j \in\left[2^{m}\right]$.
From previous slide, we expressed d-degree s-sized $f(\bar{x})=\sum \prod g_{i j}$ with $\operatorname{deg}\left(g_{i j}\right) \leq d / 4$. Apply Fischer's trick on each $\prod_{j \in[25]} g_{i j}$ to get:

$$
f(\bar{x})=\sum_{i=1}^{\operatorname{poly}(s, d)} \prod_{j=1}^{25} g_{i j}
$$

CNF to sum of $25^{\text {th }}$-powers

Fischer's Trick (Fischer94)

\mathbb{F} be a field of characteristic 0 or $>m$. One can write $g=\prod_{i \in[m]} g_{i}$ as:

$$
g=g_{1} \cdot g_{2} \cdot \ldots g_{m}=\sum_{j=1}^{2^{m}} c_{j} \cdot h_{j}^{m}
$$

where $c_{j} \in \mathbb{F}$ and $h_{j} \in \operatorname{span}_{\mathbb{F}}\left(g_{i} \mid i \in[m]\right)$, for $j \in\left[2^{m}\right]$.
From previous slide, we expressed d-degree s-sized $f(\bar{x})=\sum \prod g_{i j}$ with $\operatorname{deg}\left(g_{i j}\right) \leq d / 4$. Apply Fischer's trick on each $\prod_{j \in[25]} g_{i j}$ to get:

$$
\begin{aligned}
f(\bar{x}) & =\sum_{i=1}^{\operatorname{poly}(s, d)} \prod_{j=1}^{25} g_{i j} \\
& =\sum_{i=1}^{\operatorname{poly}(s, d)} c_{i} \cdot g_{i}^{25}
\end{aligned}
$$

CNF to sum of $25^{\text {th }}$-powers

Fischer's Trick (Fischer94)

\mathbb{F} be a field of characteristic 0 or $>m$. One can write $g=\prod_{i \in[m]} g_{i}$ as:

$$
g=g_{1} \cdot g_{2} \cdot \ldots g_{m}=\sum_{j=1}^{2^{m}} c_{j} \cdot h_{j}^{m}
$$

where $c_{j} \in \mathbb{F}$ and $h_{j} \in \operatorname{span}_{\mathbb{F}}\left(g_{i} \mid i \in[m]\right)$, for $j \in\left[2^{m}\right]$.
From previous slide, we expressed d-degree s-sized $f(\bar{x})=\sum \prod g_{i j}$ with $\operatorname{deg}\left(g_{i j}\right) \leq d / 4$. Apply Fischer's trick on each $\prod_{j \in[25]} g_{i j}$ to get:

$$
\begin{aligned}
f(\bar{x}) & =\sum_{i=1}^{\operatorname{poly}(s, d)} \prod_{j=1}^{25} g_{i j} \\
& =\sum_{i=1}^{\operatorname{poly}(s, d)} c_{i} \cdot g_{i}^{25} \quad \text { where } \operatorname{deg}\left(g_{i}\right) \leq d / 4 .
\end{aligned}
$$

$m^{\text {th }}$ power to sum of $r^{\text {th }}$-power

Sum-Identity Lemma (DST20)

Let \mathbb{F} be a field of characteristic 0 or large. Let $h(\bar{x}) \in \mathbb{F}[\bar{x}]$ and $0 \leq m \leq r$. There exist $c_{m, i} \in \mathbb{F}$ and distinct $\lambda_{i} \in \mathbb{F}$, for $0 \leq i \leq r$, such that

$$
h(\bar{x})^{m}=\sum_{i=0}^{r} c_{m, i}\left(h(\bar{x})+\lambda_{i}\right)^{r} .
$$

$m^{\text {th }}$ power to sum of $r^{\text {th }}$-power

Sum-Identity Lemma (DST20)

Let \mathbb{F} be a field of characteristic 0 or large. Let $h(\bar{x}) \in \mathbb{F}[\bar{x}]$ and $0 \leq m \leq r$. There exist $c_{m, i} \in \mathbb{F}$ and distinct $\lambda_{i} \in \mathbb{F}$, for $0 \leq i \leq r$, such that

$$
h(\bar{x})^{m}=\sum_{i=0}^{r} c_{m, i}\left(h(\bar{x})+\lambda_{i}\right)^{r} .
$$

Proof Sketch.

$m^{\text {th }}$ power to sum of $r^{\text {th }}$-power

Sum-Identity Lemma (DST20)

Let \mathbb{F} be a field of characteristic 0 or large. Let $h(\bar{x}) \in \mathbb{F}[\bar{x}]$ and $0 \leq m \leq r$. There exist $c_{m, i} \in \mathbb{F}$ and distinct $\lambda_{i} \in \mathbb{F}$, for $0 \leq i \leq r$, such that

$$
h(\bar{x})^{m}=\sum_{i=0}^{r} c_{m, i}\left(h(\bar{x})+\lambda_{i}\right)^{r} .
$$

Proof Sketch.

Consider $(h(\bar{x})+t)^{r}=\sum_{i=0}^{r}\binom{r}{i} h^{i} \cdot t^{r-i}$.

$m^{\text {th }}$ power to sum of $r^{\text {th }}$-power

Sum-Identity Lemma (DST20)

Let \mathbb{F} be a field of characteristic 0 or large. Let $h(\bar{x}) \in \mathbb{F}[\bar{x}]$ and $0 \leq m \leq r$. There exist $c_{m, i} \in \mathbb{F}$ and distinct $\lambda_{i} \in \mathbb{F}$, for $0 \leq i \leq r$, such that

$$
h(\bar{x})^{m}=\sum_{i=0}^{r} c_{m, i}\left(h(\bar{x})+\lambda_{i}\right)^{r} .
$$

Proof Sketch.

Consider $(h(\bar{x})+t)^{r}=\sum_{i=0}^{r}\binom{r}{i} h^{i} \cdot t^{r-i}$. As $m \leq r$, one of the h^{i} must be h^{m}.

Sum-Identity Lemma (DST20)

Let \mathbb{F} be a field of characteristic 0 or large. Let $h(\bar{x}) \in \mathbb{F}[\bar{x}]$ and $0 \leq m \leq r$. There exist $c_{m, i} \in \mathbb{F}$ and distinct $\lambda_{i} \in \mathbb{F}$, for $0 \leq i \leq r$, such that

$$
h(\bar{x})^{m}=\sum_{i=0}^{r} c_{m, i}\left(h(\bar{x})+\lambda_{i}\right)^{r}
$$

Proof Sketch.

Consider $(h(\bar{x})+t)^{r}=\sum_{i=0}^{r}\binom{r}{i} h^{i} \cdot t^{r-i}$. As $m \leq r$, one of the h^{i} must be h^{m}. Interpolate at $t=\lambda_{i}$ for $0 \leq i \leq r(r+1$-many distinct points).

Sum-Identity Lemma (DST20)

Let \mathbb{F} be a field of characteristic 0 or large. Let $h(\bar{x}) \in \mathbb{F}[\bar{x}]$ and $0 \leq m \leq r$. There exist $c_{m, i} \in \mathbb{F}$ and distinct $\lambda_{i} \in \mathbb{F}$, for $0 \leq i \leq r$, such that

$$
h(\bar{x})^{m}=\sum_{i=0}^{r} c_{m, i}\left(h(\bar{x})+\lambda_{i}\right)^{r}
$$

Proof Sketch.

Consider $(h(\bar{x})+t)^{r}=\sum_{i=0}^{r}\binom{r}{i} h^{i} \cdot t^{r-i}$. As $m \leq r$, one of the h^{i} must be h^{m}. Interpolate at $t=\lambda_{i}$ for $0 \leq i \leq r(r+1$-many distinct points).

$$
\left[\begin{array}{cccc}
\binom{r}{0} \lambda_{0}^{r} & \binom{r}{1} \lambda_{0}^{r-1} & \ldots & \binom{r}{r} \lambda_{0}^{0} \\
\binom{r}{0} \lambda_{1}^{r} & \binom{r}{1} \lambda_{1}^{r-1} & \ldots & \binom{r}{r} \lambda_{1}^{0} \\
\vdots & \vdots & \vdots & \vdots \\
\binom{r}{0} \lambda_{r}^{r} & \binom{r}{1} \lambda_{r}^{r-1} & \ldots & \binom{r}{r} \lambda_{r}^{0}
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
h \\
\vdots \\
h^{r}
\end{array}\right]=\left[\begin{array}{c}
\left(h(\bar{x})+\lambda_{0}\right)^{r} \\
\left(h(\bar{x})+\lambda_{1}\right)^{r} \\
\vdots \\
\left(h(\bar{x})+\lambda_{r}\right)^{r}
\end{array}\right]
$$

CNF to sum of constant $r^{\text {th }}$-power

We have already established that n-variate, d-degree $f(\bar{x})$ computed by size-s circuit can be written as poly (s, d)-many sum of $25^{\text {th }}$-powers of degree at most $d / 4$.

CNF to sum of constant $r^{\text {th }}$-power

We have already established that n-variate, d-degree $f(\bar{x})$ computed by size-s circuit can be written as poly (s, d)-many sum of $25^{\text {th }}$-powers of degree at most $d / 4$. Using the Sum-Identity lemma, for $r \geq 25$, we get:

CNF to sum of constant $r^{\text {th }}$-power

We have already established that n-variate, d-degree $f(\bar{x})$ computed by size-s circuit can be written as poly (s, d)-many sum of $25^{\text {th }}$-powers of degree at most $d / 4$. Using the Sum-Identity lemma, for $r \geq 25$, we get:

$$
f(\bar{x})=\sum_{i=1}^{\operatorname{poly}(s, d)} c_{i} \cdot g_{i}^{25}
$$

CNF to sum of constant $r^{\text {th }}$-power

We have already established that n-variate, d-degree $f(\bar{x})$ computed by size-s circuit can be written as poly (s, d)-many sum of $25^{\text {th }}$-powers of degree at most $d / 4$. Using the Sum-Identity lemma, for $r \geq 25$, we get:

$$
\begin{aligned}
f(\bar{x}) & =\sum_{i=1}^{\operatorname{poly}(s, d)} c_{i} \cdot g_{i}^{25} \\
& =\sum_{i=1}^{\operatorname{poly}(s, d)}\left(\sum_{j=0}^{r} c_{i j} \cdot\left(g_{i}+\lambda_{j}\right)^{r}\right)
\end{aligned}
$$

CNF to sum of constant $r^{\text {th }}$-power

We have already established that n-variate, d-degree $f(\bar{x})$ computed by size-s circuit can be written as poly (s, d)-many sum of $25^{\text {th }}$-powers of degree at most $d / 4$. Using the Sum-Identity lemma, for $r \geq 25$, we get:

$$
\begin{aligned}
f(\bar{x}) & =\sum_{i=1}^{\operatorname{poly}(s, d)} c_{i} \cdot g_{i}^{25} \\
& =\sum_{i=1}^{\operatorname{poly}(s, d)}\left(\sum_{j=0}^{r} c_{i j} \cdot\left(g_{i}+\lambda_{j}\right)^{r}\right) \\
& =\sum_{i=1}^{(r+1) \cdot \operatorname{poly}(s, d)} c_{i}^{\prime} \cdot \tilde{g}_{i}^{r}
\end{aligned}
$$

CNF to sum of constant $r^{\text {th }}$-power

We have already established that n-variate, d-degree $f(\bar{x})$ computed by size-s circuit can be written as poly (s, d)-many sum of $25^{\text {th }}$-powers of degree at most $d / 4$. Using the Sum-Identity lemma, for $r \geq 25$, we get:

$$
\begin{aligned}
f(\bar{x}) & =\sum_{i=1}^{\operatorname{poly}(s, d)} c_{i} \cdot g_{i}^{25} \\
& =\sum_{i=1}^{\operatorname{poly}(s, d)}\left(\sum_{j=0}^{r} c_{i j} \cdot\left(g_{i}+\lambda_{j}\right)^{r}\right) \\
& =\sum_{i=1}^{(r+1) \cdot \operatorname{poly}(s, d)} c_{i}^{\prime} \cdot \tilde{g}_{i}^{r} \quad \text { where } \operatorname{deg}\left(\tilde{g}_{i}\right) \leq d / 4 \text { and } c_{i}^{\prime} \in \mathbb{F}
\end{aligned}
$$

CNF to sum of constant $r^{\text {th }}$-power

We have already established that n-variate, d-degree $f(\bar{x})$ computed by size-s circuit can be written as poly (s, d)-many sum of $25^{\text {th }}$-powers of degree at most $d / 4$. Using the Sum-Identity lemma, for $r \geq 25$, we get:

$$
\begin{aligned}
f(\bar{x}) & =\sum_{i=1}^{\operatorname{poly}(s, d)} c_{i} \cdot g_{i}^{25} \\
& =\sum_{i=1}^{\operatorname{poly}(s, d)}\left(\sum_{j=0}^{r} c_{i j} \cdot\left(g_{i}+\lambda_{j}\right)^{r}\right) \\
& =\sum_{i=1}^{(r+1) \cdot \operatorname{poly}(s, d)} c_{i}^{\prime} \cdot \tilde{g}_{i}^{r} \quad \text { where } \operatorname{deg}\left(\tilde{g}_{i}\right) \leq d / 4 \text { and } c_{i}^{\prime} \in \mathbb{F} \\
& \in \sum_{\operatorname{poly}(s, d)}^{r} \sum^{r} \sum \prod^{d / 4}
\end{aligned}
$$

Proof Idea of Main Theorems

Proof of Theorem 1: Conjecture C1 to PIT

Proof of Theorem 1: Conjecture C1 to PIT

- Assume C 1 holds i.e. for $f_{d}:=(x+1)^{d}, \bigcup_{\mathbb{F}}\left(f_{d}, r, d^{\delta_{1}}\right) \geq d / r^{\delta_{2}}$.

Proof of Theorem 1: Conjecture C1 to PIT

- Assume C 1 holds i.e. for $f_{d}:=(x+1)^{d}, \cup_{\mathbb{F}}\left(f_{d}, r, d^{\delta_{1}}\right) \geq d / r^{\delta_{2}}$.
- Idea: use C 1 to prove that a fixed constant k-variate $O(n)$-degree hard polynomial family $\left(P_{k, n}\right)_{n}$ exists i.e. $\operatorname{size}\left(P_{k, n}\right)=n^{\Omega(1)}$.

Proof of Theorem 1: Conjecture C1 to PIT

- Assume C 1 holds i.e. for $f_{d}:=(x+1)^{d}, U_{\mathbb{F}}\left(f_{d}, r, d^{\delta_{1}}\right) \geq d / r^{\delta_{2}}$.
- Idea: use C 1 to prove that a fixed constant k-variate $O(n)$-degree hard polynomial family $\left(P_{k, n}\right)_{n}$ exists i.e. $\operatorname{size}\left(P_{k, n}\right)=n^{\Omega(1)}$.
- Use f_{d} to construct a k-variate $O(n)$ degree polynomial $P_{k, n}(d:=d(n))$.

Proof of Theorem 1: Conjecture C1 to PIT

- Assume C 1 holds i.e. for $f_{d}:=(x+1)^{d}, U_{\mathbb{F}}\left(f_{d}, r, d^{\delta_{1}}\right) \geq d / r^{\delta_{2}}$.
- Idea: use C 1 to prove that a fixed constant k-variate $O(n)$-degree hard polynomial family $\left(P_{k, n}\right)_{n}$ exists i.e. $\operatorname{size}\left(P_{k, n}\right)=n^{\Omega(1)}$.
- Use f_{d} to construct a k-variate $O(n)$ degree polynomial $P_{k, n}(d:=d(n))$.
- Use GKSS19: constant k-variate ($k \geq 4$) explicit hard polynomial implies blackbox-PIT \in P.

Conjecture C1 to constant k-variate hard polynomial

- Fix a large k.

Conjecture C1 to constant k-variate hard polynomial

- Fix a large $k\left(k \geq \max \left(17\left(\delta_{2}+1\right), 19 r / \delta_{1}\right)\right)$.

Conjecture C1 to constant k-variate hard polynomial

- Fix a large k. For every $n \in \mathbb{N}$, choose the largest $d:=d(n)$ which is $\leq(n+1)^{k}-1$ and $d \in I_{r}$.

Conjecture C1 to constant k-variate hard polynomial

- Fix a large k. For every $n \in \mathbb{N}$, choose the largest $d:=d(n)$ which is $\leq(n+1)^{k}-1$ and $d \in I_{r}$. Observe: $d=\Omega\left((n+1)^{k}\right)$.

Conjecture C1 to constant k-variate hard polynomial

- Fix a large k. For every $n \in \mathbb{N}$, choose the largest $d:=d(n)$ which is $\leq(n+1)^{k}-1$ and $d \in I_{r}$. Observe: $d=\Omega\left((n+1)^{k}\right)$.
- Apply inverse Kronecker substitution on f_{d} to construct $P_{k, n}$:

Conjecture C1 to constant k-variate hard polynomial

- Fix a large k. For every $n \in \mathbb{N}$, choose the largest $d:=d(n)$ which is $\leq(n+1)^{k}-1$ and $d \in I_{r}$. Observe: $d=\Omega\left((n+1)^{k}\right)$.
- Apply inverse Kronecker substitution on f_{d} to construct $P_{k, n}$:

$$
P_{k, n}\left(x_{1}, \ldots, x_{k}\right) \mapsto P_{k, n}\left(x^{(n+1)^{0}}, \ldots, x^{(n+1)^{k-1}}\right)=f_{d}(x)
$$

Conjecture C1 to constant k-variate hard polynomial

- Fix a large k. For every $n \in \mathbb{N}$, choose the largest $d:=d(n)$ which is $\leq(n+1)^{k}-1$ and $d \in I_{r}$. Observe: $d=\Omega\left((n+1)^{k}\right)$.
- Apply inverse Kronecker substitution on f_{d} to construct $P_{k, n}$:

$$
P_{k, n}\left(x_{1}, \ldots, x_{k}\right) \mapsto P_{k, n}\left(x^{(n+1)^{0}}, \ldots, x^{(n+1)^{k-1}}\right)=f_{d}(x)
$$

$P_{k, n}$ is a k-variate polynomial with individual degree at most n. Thus, it is a bijection between $\operatorname{supp}\left(P_{k, n}\right)$ and $\operatorname{supp}\left(f_{d}\right)$.

Conjecture C1 to constant k-variate hard polynomial

- Fix a large k. For every $n \in \mathbb{N}$, choose the largest $d:=d(n)$ which is $\leq(n+1)^{k}-1$ and $d \in I_{r}$. Observe: $d=\Omega\left((n+1)^{k}\right)$.
- Apply inverse Kronecker substitution on f_{d} to construct $P_{k, n}$:

$$
P_{k, n}\left(x_{1}, \ldots, x_{k}\right) \mapsto P_{k, n}\left(x^{(n+1)^{0}}, \ldots, x^{(n+1)^{k-1}}\right)=f_{d}(x)
$$

$P_{k, n}$ is a k-variate polynomial with individual degree at most n. Thus, it is a bijection between $\operatorname{supp}\left(P_{k, n}\right)$ and $\operatorname{supp}\left(f_{d}\right)$.

- Note that: $\operatorname{deg}\left(P_{k, n}\right) \leq k \cdot n=O(n)$.

Conjecture C1 to constant k-variate hard polynomial

- Fix a large k. For every $n \in \mathbb{N}$, choose the largest $d:=d(n)$ which is $\leq(n+1)^{k}-1$ and $d \in I_{r}$. Observe: $d=\Omega\left((n+1)^{k}\right)$.
- Apply inverse Kronecker substitution on f_{d} to construct $P_{k, n}$:

$$
P_{k, n}\left(x_{1}, \ldots, x_{k}\right) \mapsto P_{k, n}\left(x^{(n+1)^{0}}, \ldots, x^{(n+1)^{k-1}}\right)=f_{d}(x)
$$

$P_{k, n}$ is a k-variate polynomial with individual degree at most n. Thus, it is a bijection between $\operatorname{supp}\left(P_{k, n}\right)$ and $\operatorname{supp}\left(f_{d}\right)$.

- Note that: $\operatorname{deg}\left(P_{k, n}\right) \leq k \cdot n=O(n)$.
- Claim: $\operatorname{size}\left(P_{k, n}\right)=\left(\operatorname{deg}\left(P_{k, n}\right)\right)^{\Omega(1)}=d^{\Omega(1)}$.

Conjecture C1 to constant k-variate hard polynomial

- Fix a large k. For every $n \in \mathbb{N}$, choose the largest $d:=d(n)$ which is $\leq(n+1)^{k}-1$ and $d \in I_{r}$. Observe: $d=\Omega\left((n+1)^{k}\right)$.
- Apply inverse Kronecker substitution on f_{d} to construct $P_{k, n}$:

$$
P_{k, n}\left(x_{1}, \ldots, x_{k}\right) \mapsto P_{k, n}\left(x^{(n+1)^{0}}, \ldots, x^{(n+1)^{k-1}}\right)=f_{d}(x)
$$

$P_{k, n}$ is a k-variate polynomial with individual degree at most n. Thus, it is a bijection between $\operatorname{supp}\left(P_{k, n}\right)$ and $\operatorname{supp}\left(f_{d}\right)$.

- Note that: $\operatorname{deg}\left(P_{k, n}\right) \leq k \cdot n=O(n)$.
- Claim: $\operatorname{size}\left(P_{k, n}\right)=\left(\operatorname{deg}\left(P_{k, n}\right)\right)^{\Omega(1)}=d^{\Omega(1)}$. Proof by contradiction: If $P_{k, n}$ is not hard, then C 1 doesn't hold for infinitely many $d \in I_{r}$.

Proof of hardness of $P_{k, n}$

Proof of hardness of $P_{k, n}$

- Suppose, $\operatorname{size}\left(P_{k, n}\right) \leq d^{1 / \mu}\left(\mu\right.$, depending on $r, \delta_{1}, \delta_{2}$, fixed later $)$.

Proof of hardness of $P_{k, n}$

- Suppose, $\operatorname{size}\left(P_{k, n}\right) \leq d^{1 / \mu}$ (μ, depending on $r, \delta_{1}, \delta_{2}$, fixed later).
- We know, using the derived CNF, $P_{k, n}$ can be written as

$$
P_{k, n}=\sum_{i=1}^{\operatorname{poly}\left(d^{1 / \mu}, k n\right)} c_{i}^{\prime} \cdot \tilde{g}_{i}^{r}
$$

where $\operatorname{deg}\left(\tilde{g}_{i}\right) \leq k n / 4$.

Proof of hardness of $P_{k, n}$

- Suppose, $\operatorname{size}\left(P_{k, n}\right) \leq d^{1 / \mu}$ (μ, depending on $r, \delta_{1}, \delta_{2}$, fixed later).
- We know, using the derived CNF, $P_{k, n}$ can be written as

$$
P_{k, n}=\sum_{i=1}^{\operatorname{poly}\left(d^{1 / \mu}, k n\right)} c_{i}^{\prime} \cdot \tilde{g}_{i}^{r}
$$

where $\operatorname{deg}\left(\tilde{g}_{i}\right) \leq k n / 4$.

- Direct counting argument shows: $\left|\bigcup_{i} \operatorname{supp}\left(\tilde{g}_{i}\right)\right| \leq\binom{ k+k n / 4}{k}$.

Proof of hardness of $P_{k, n}$

- Suppose, $\operatorname{size}\left(P_{k, n}\right) \leq d^{1 / \mu}$ (μ, depending on $r, \delta_{1}, \delta_{2}$, fixed later).
- We know, using the derived CNF, $P_{k, n}$ can be written as

$$
P_{k, n}=\sum_{i=1}^{\operatorname{poly}\left(d^{1 / \mu}, k n\right)} c_{i}^{\prime} \cdot \tilde{g}_{i}^{r}
$$

where $\operatorname{deg}\left(\tilde{g}_{i}\right) \leq k n / 4$.

- Direct counting argument shows: $\left|\bigcup_{i} \operatorname{supp}\left(\tilde{g}_{i}\right)\right| \leq\binom{ k+k n / 4}{k}$.
- Let ϕ be the Kronecker map $\phi: x_{i} \mapsto x^{(n+1)^{i-1}}$ for $i \in[k]$. Then,

$$
f_{d}=\phi\left(P_{k, n}\right)=\sum_{i=1}^{\operatorname{poly}\left(d^{1 / \mu}, k n\right)} c_{i}^{\prime} \cdot \phi\left(\tilde{g}_{i}\right)^{r}
$$

Proof of hardness of $P_{k, n}$

- Suppose, $\operatorname{size}\left(P_{k, n}\right) \leq d^{1 / \mu}$ (μ, depending on $r, \delta_{1}, \delta_{2}$, fixed later).
- We know, using the derived CNF, $P_{k, n}$ can be written as

$$
P_{k, n}=\sum_{i=1}^{\text {poly }\left(d^{1 / \mu}, k n\right)} c_{i}^{\prime} \cdot \tilde{g}_{i}^{r}
$$

where $\operatorname{deg}\left(\tilde{g}_{i}\right) \leq k n / 4$.

- Direct counting argument shows: $\left|\bigcup_{i} \operatorname{supp}\left(\tilde{g}_{i}\right)\right| \leq\binom{ k+k n / 4}{k}$.
- Let ϕ be the Kronecker map $\phi: x_{i} \mapsto x^{(n+1)^{i-1}}$ for $i \in[k]$. Then,

$$
f_{d}=\phi\left(P_{k, n}\right)=\sum_{i=1}^{\operatorname{poly}\left(d^{1 / \mu}, k n\right)} c_{i}^{\prime} \cdot \phi\left(\tilde{g}_{i}\right)^{r}
$$

- ϕ cannot increase the union-support or the top fan-in.

Finishing Theorem 1

- f_{d} has sum of r-th power representation with top fan-in $s_{0}:=\operatorname{poly}\left(d^{1 / \mu}, k n\right)$ and support-union at most $s_{1}:=\binom{k+k n / 4}{k}$.

Finishing Theorem 1

- f_{d} has sum of r-th power representation with top fan-in $s_{0}:=\operatorname{poly}\left(d^{1 / \mu}, k n\right)$ and support-union at most $s_{1}:=\binom{k+k n / 4}{k}$.
- This means, in notation: $U_{\mathbb{F}}\left(f_{d}, r, s_{0}\right) \leq s_{1}$.

Finishing Theorem 1

- f_{d} has sum of r-th power representation with top fan-in $s_{0}:=\operatorname{poly}\left(d^{1 / \mu}, k n\right)$ and support-union at most $s_{1}:=\binom{k+k n / 4}{k}$.
- This means, in notation: $U_{\mathbb{F}}\left(f_{d}, r, s_{0}\right) \leq s_{1}$.
- Choose μ appropriately so that $s_{0} \leq d^{\delta_{1}}$ and $s_{1}<d / r^{\delta_{2}}$.

Finishing Theorem 1

- f_{d} has sum of r-th power representation with top fan-in $s_{0}:=\operatorname{poly}\left(d^{1 / \mu}, k n\right)$ and support-union at most $s_{1}:=\binom{k+k n / 4}{k}$.
- This means, in notation: $\cup_{\mathbb{F}}\left(f_{d}, r, s_{0}\right) \leq s_{1}$.
- Choose μ appropriately so that $s_{0} \leq d^{\delta_{1}}$ and $s_{1}<d / r^{\delta_{2}}$.
- This means, $U_{\mathbb{F}}\left(f_{d}, r, d^{\delta_{1}}\right)<d / r^{\delta_{2}}$ for infinitely many $d \in I_{r}$, a contradiction!

Finishing Theorem 1

- f_{d} has sum of r-th power representation with top fan-in $s_{0}:=\operatorname{poly}\left(d^{1 / \mu}, k n\right)$ and support-union at most $s_{1}:=\binom{k+k n / 4}{k}$.
- This means, in notation: $U_{\mathbb{F}}\left(f_{d}, r, s_{0}\right) \leq s_{1}$.
- Choose μ appropriately so that $s_{0} \leq d^{\delta_{1}}$ and $s_{1}<d / r^{\delta_{2}}$.
- This means, $U_{\mathbb{F}}\left(f_{d}, r, d^{\delta_{1}}\right)<d / r^{\delta_{2}}$ for infinitely many $d \in I_{r}$, a contradiction!
- $P_{k, n}$ is hard \Longrightarrow PIT $\in \mathrm{P}$ (using GKSS19).

Finishing Theorem 1

- f_{d} has sum of r-th power representation with top fan-in $s_{0}:=\operatorname{poly}\left(d^{1 / \mu}, k n\right)$ and support-union at most $s_{1}:=\binom{k+k n / 4}{k}$.
- This means, in notation: $U_{\mathbb{F}}\left(f_{d}, r, s_{0}\right) \leq s_{1}$.
- Choose μ appropriately so that $s_{0} \leq d^{\delta_{1}}$ and $s_{1}<d / r^{\delta_{2}}$.
- This means, $U_{\mathbb{F}}\left(f_{d}, r, d^{\delta_{1}}\right)<d / r^{\delta_{2}}$ for infinitely many $d \in I_{r}$, a contradiction!
- $P_{k, n}$ is hard \Longrightarrow PIT $\in \mathrm{P}$ (using GKSS19).
- Instead of 25-CNF, we could have used 5-CNF, then $s_{1}:=\binom{k+k n / 2}{k}$ which is $>d$. Thus, $r \geq 25$ is required!

Proof of Theorem 2: Conjecture C1 to VP \neq VNP

Proof of Theorem 2: Conjecture C1 to VP \neq VNP

- Fix a large constant n.

Proof of Theorem 2: Conjecture C1 to VP \neq VNP

- Fix a large constant n. For every $k \in \mathbb{N}$, choose the largest $d:=d(k)$ which is $\leq(n+1)^{k}-1$ and $d \in I_{r}$.

Proof of Theorem 2: Conjecture C1 to VP \neq VNP

- Fix a large constant n. For every $k \in \mathbb{N}$, choose the largest $d:=d(k)$ which is $\leq(n+1)^{k}-1$ and $d \in I_{r}$. Thus, $d=\Omega\left((n+1)^{k}\right)=2^{\Omega(k)}$.

Proof of Theorem 2: Conjecture C1 to VP \neq VNP

- Fix a large constant n. For every $k \in \mathbb{N}$, choose the largest $d:=d(k)$ which is $\leq(n+1)^{k}-1$ and $d \in I_{r}$. Thus, $d=\Omega\left((n+1)^{k}\right)=2^{\Omega(k)}$.
- From f_{d} construct $P_{k, n}$, a k-variate, n-individual degree polynomial:

$$
P_{k, n}\left(x_{1}, \ldots, x_{k}\right) \mapsto P_{k, n}\left(x^{(n+1)^{0}}, \ldots, x^{(n+1)^{k-1}}\right)=f_{d}(x)
$$

Proof of Theorem 2: Conjecture C1 to VP \neq VNP

- Fix a large constant n. For every $k \in \mathbb{N}$, choose the largest $d:=d(k)$ which is $\leq(n+1)^{k}-1$ and $d \in I_{r}$. Thus, $d=\Omega\left((n+1)^{k}\right)=2^{\Omega(k)}$.
- From f_{d} construct $P_{k, n}$, a k-variate, n-individual degree polynomial:

$$
P_{k, n}\left(x_{1}, \ldots, x_{k}\right) \mapsto P_{k, n}\left(x^{(n+1)^{0}}, \ldots, x^{(n+1)^{k-1}}\right)=f_{d}(x)
$$

- Note that: $\operatorname{deg}\left(P_{k, n}\right) \leq k \cdot n=O(k)$.

Proof of Theorem 2: Conjecture C1 to VP \neq VNP

- Fix a large constant n. For every $k \in \mathbb{N}$, choose the largest $d:=d(k)$ which is $\leq(n+1)^{k}-1$ and $d \in I_{r}$. Thus, $d=\Omega\left((n+1)^{k}\right)=2^{\Omega(k)}$.
- From f_{d} construct $P_{k, n}$, a k-variate, n-individual degree polynomial:

$$
P_{k, n}\left(x_{1}, \ldots, x_{k}\right) \mapsto P_{k, n}\left(x^{(n+1)^{0}}, \ldots, x^{(n+1)^{k-1}}\right)=f_{d}(x)
$$

- Note that: $\operatorname{deg}\left(P_{k, n}\right) \leq k \cdot n=O(k)$.
- We will show that Conjecture C 1 implies $\operatorname{size}\left(P_{k, n}\right) \geq d^{\Omega(1)}=2^{\Omega(k)}=2^{\Omega\left(\operatorname{deg}\left(P_{k, n}\right)\right)} \Longrightarrow\left\{P_{k, n}\right\}_{k} \notin \mathrm{VP}$.

Proof of Theorem 2: Conjecture C1 to VP \neq VNP

- Fix a large constant n. For every $k \in \mathbb{N}$, choose the largest $d:=d(k)$ which is $\leq(n+1)^{k}-1$ and $d \in I_{r}$. Thus, $d=\Omega\left((n+1)^{k}\right)=2^{\Omega(k)}$.
- From f_{d} construct $P_{k, n}$, a k-variate, n-individual degree polynomial:

$$
P_{k, n}\left(x_{1}, \ldots, x_{k}\right) \mapsto P_{k, n}\left(x^{(n+1)^{0}}, \ldots, x^{(n+1)^{k-1}}\right)=f_{d}(x)
$$

- Note that: $\operatorname{deg}\left(P_{k, n}\right) \leq k \cdot n=O(k)$.
- We will show that Conjecture C 1 implies $\operatorname{size}\left(P_{k, n}\right) \geq d^{\Omega(1)}=2^{\Omega(k)}=2^{\Omega\left(\operatorname{deg}\left(P_{k, n}\right)\right)} \Longrightarrow\left\{P_{k, n}\right\}_{k} \notin \mathrm{VP}$.
- Assume GRH and VP $=$ VNP, we will show that $\left\{P_{k, n}\right\}_{k} \in \mathrm{VP}$.

Proof of Theorem 2: Conjecture C1 to VP $\neq \mathrm{VNP}$

- Fix a large constant n. For every $k \in \mathbb{N}$, choose the largest $d:=d(k)$ which is $\leq(n+1)^{k}-1$ and $d \in I_{r}$. Thus, $d=\Omega\left((n+1)^{k}\right)=2^{\Omega(k)}$.
- From f_{d} construct $P_{k, n}$, a k-variate, n-individual degree polynomial:

$$
P_{k, n}\left(x_{1}, \ldots, x_{k}\right) \mapsto P_{k, n}\left(x^{(n+1)^{0}}, \ldots, x^{(n+1)^{k-1}}\right)=f_{d}(x)
$$

- Note that: $\operatorname{deg}\left(P_{k, n}\right) \leq k \cdot n=O(k)$.
- We will show that Conjecture C 1 implies $\operatorname{size}\left(P_{k, n}\right) \geq d^{\Omega(1)}=2^{\Omega(k)}=2^{\Omega\left(\operatorname{deg}\left(P_{k, n}\right)\right)} \Longrightarrow\left\{P_{k, n}\right\}_{k} \notin \mathrm{VP}$.
- Assume GRH and VP $=$ VNP, we will show that $\left\{P_{k, n}\right\}_{k} \in \mathrm{VP}$.
- Thus, GRH and Conjecture $\mathrm{C} 1 \Longrightarrow \mathrm{VP} \neq \mathrm{VNP}$.

GRH and $\mathrm{VP}=\mathrm{VNP} \Longrightarrow\left\{P_{k, n}\right\}_{k} \in \mathrm{VP}$

GRH and VP $=\mathrm{VNP} \Longrightarrow\left\{P_{k, n}\right\}_{k} \in \mathrm{VP}$

- One can write $P_{k, n}(\bar{x})$ as

$$
P_{k, n}(\bar{x})=\sum_{\bar{e} \in[0, c]^{k}}\binom{d}{e} \cdot \bar{x}^{\bar{e}}
$$

GRH and VP $=\mathrm{VNP} \Longrightarrow\left\{P_{k, n}\right\}_{k} \in \mathrm{VP}$

- One can write $P_{k, n}(\bar{x})$ as

$$
P_{k, n}(\bar{x})=\sum_{\bar{e} \in[0, c]^{k}}\binom{d}{e} \cdot \bar{x}^{\bar{e}}
$$

- ($\binom{d}{e}$ are computable in complexity class CH (Counting Hierarchy).

GRH and VP $=\mathrm{VNP} \Longrightarrow\left\{P_{k, n}\right\}_{k} \in \mathrm{VP}$

- One can write $P_{k, n}(\bar{x})$ as

$$
P_{k, n}(\bar{x})=\sum_{\bar{e} \in[0, c]^{k}}\binom{d}{e} \cdot \bar{x}^{\bar{e}}
$$

- ($\binom{d}{e}$ are computable in complexity class CH (Counting Hierarchy).
- Bürgisser proved (in 2000) that if VP = VNP and GRH, then $\mathrm{CH}=\mathrm{P} /$ poly. This means, $\binom{d}{e}$ are computable in $\mathrm{P} /$ poly.

GRH and VP $=\mathrm{VNP} \Longrightarrow\left\{P_{k, n}\right\}_{k} \in \mathrm{VP}$

- One can write $P_{k, n}(\bar{x})$ as

$$
P_{k, n}(\bar{x})=\sum_{\bar{e} \in[0, c]^{k}}\binom{d}{e} \cdot \bar{x}^{\bar{e}}
$$

- ($\binom{d}{e}$ are computable in complexity class CH (Counting Hierarchy).
- Bürgisser proved (in 2000) that if VP = VNP and GRH, then $\mathrm{CH}=\mathrm{P} /$ poly. This means, $\binom{d}{e}$ are computable in $\mathrm{P} /$ poly.
- Using Valiant's Criterion, $\left\{P_{k, n}\right\}_{k} \in$ VNP $=\mathrm{VP}$.

From C1 to $\left\{P_{k, n}\right\}_{k} \notin \mathrm{VP}$

- Assume size $\left(P_{k, n}\right) \leq d^{1 / \mu}$; where μ depends on $r, \delta_{1}, \delta_{2}$, fixed later.

From C1 to $\left\{P_{k, n}\right\}_{k} \notin \mathrm{VP}$

- Assume $\operatorname{size}\left(P_{k, n}\right) \leq d^{1 / \mu}$; where μ depends on $r, \delta_{1}, \delta_{2}$, fixed later.
- We know, using the derived CNF, $P_{k, n}$ can be written as

$$
P_{k, n}=\sum_{i=1}^{\operatorname{poly}\left(d^{1 / \mu}, k n\right)} c_{i}^{\prime} \cdot \tilde{g}_{i}^{r}
$$

where $\operatorname{deg}\left(\tilde{g}_{i}\right) \leq k n / 4$.

From C1 to $\left\{P_{k, n}\right\}_{k} \notin \mathrm{VP}$

- Assume $\operatorname{size}\left(P_{k, n}\right) \leq d^{1 / \mu}$; where μ depends on $r, \delta_{1}, \delta_{2}$, fixed later.
- We know, using the derived CNF, $P_{k, n}$ can be written as

$$
P_{k, n}=\sum_{i=1}^{\operatorname{poly}\left(d^{1 / \mu}, k n\right)} c_{i}^{\prime} \cdot \tilde{g}_{i}^{r}
$$

where $\operatorname{deg}\left(\tilde{g}_{i}\right) \leq k n / 4$.

- Direct counting argument shows: $\left|\bigcup_{i} \operatorname{supp}\left(\tilde{g}_{i}\right)\right| \leq\binom{ k+k n / 4}{k}$.

From C1 to $\left\{P_{k, n}\right\}_{k} \notin \mathrm{VP}$

- Assume $\operatorname{size}\left(P_{k, n}\right) \leq d^{1 / \mu}$; where μ depends on $r, \delta_{1}, \delta_{2}$, fixed later.
- We know, using the derived $\mathrm{CNF}, P_{k, n}$ can be written as

$$
P_{k, n}=\sum_{i=1}^{\operatorname{poly}\left(d^{1 / \mu}, k n\right)} c_{i}^{\prime} \cdot \tilde{g}_{i}^{r}
$$

where $\operatorname{deg}\left(\tilde{g}_{i}\right) \leq k n / 4$.

- Direct counting argument shows: $\left|\bigcup_{i} \operatorname{supp}\left(\tilde{g}_{i}\right)\right| \leq\binom{ k+k n / 4}{k}$.
- Let ϕ be the Kronecker map $\phi: x_{i} \mapsto x^{(n+1)^{i-1}}$ for $i \in[k]$. Then,

$$
f_{d}=\phi\left(P_{k, n}\right)=\sum_{i=1}^{\operatorname{poly}\left(d^{1 / \mu}, k n\right)} c_{i}^{\prime} \cdot \phi\left(\tilde{g}_{i}\right)^{r}
$$

From C1 to $\left\{P_{k, n}\right\}_{k} \notin \mathrm{VP}$

- Assume $\operatorname{size}\left(P_{k, n}\right) \leq d^{1 / \mu}$; where μ depends on $r, \delta_{1}, \delta_{2}$, fixed later.
- We know, using the derived CNF, $P_{k, n}$ can be written as

$$
P_{k, n}=\sum_{i=1}^{\operatorname{poly}\left(d^{1 / \mu}, k n\right)} c_{i}^{\prime} \cdot \tilde{g}_{i}^{r}
$$

where $\operatorname{deg}\left(\tilde{g}_{i}\right) \leq k n / 4$.

- Direct counting argument shows: $\left|\bigcup_{i} \operatorname{supp}\left(\tilde{g}_{i}\right)\right| \leq\binom{ k+k n / 4}{k}$.
- Let ϕ be the Kronecker map $\phi: x_{i} \mapsto x^{(n+1)^{i-1}}$ for $i \in[k]$. Then,

$$
f_{d}=\phi\left(P_{k, n}\right)=\sum_{i=1}^{\operatorname{poly}\left(d^{1} / \mu, k n\right)} c_{i}^{\prime} \cdot \phi\left(\tilde{g}_{i}\right)^{r}
$$

- ϕ cannot increase the union-support or the top fan-in.

Finishing Theorem 2

- f_{d} has sum of r-th power representation with top fan-in $s_{0}:=\operatorname{poly}\left(d^{1 / \mu}, k n\right)$ and support-union at most $s_{1}:=\binom{k+k n / 4}{k}$.

Finishing Theorem 2

- f_{d} has sum of r-th power representation with top fan-in $s_{0}:=\operatorname{poly}\left(d^{1 / \mu}, k n\right)$ and support-union at most $s_{1}:=\binom{k+k n / 4}{k}$.
- This means, in notation: $U_{\mathbb{F}}\left(f_{d}, r, s_{0}\right) \leq s_{1}$.

Finishing Theorem 2

- f_{d} has sum of r-th power representation with top fan-in $s_{0}:=\operatorname{poly}\left(d^{1 / \mu}, k n\right)$ and support-union at most $s_{1}:=\binom{k+k n / 4}{k}$.
- This means, in notation: $U_{\mathbb{F}}\left(f_{d}, r, s_{0}\right) \leq s_{1}$.
- Choose μ appropriately so that $s_{0} \leq d^{\delta_{1}}$ and $s_{1}<d / r^{\delta_{2}}$.

Finishing Theorem 2

- f_{d} has sum of r-th power representation with top fan-in $s_{0}:=\operatorname{poly}\left(d^{1 / \mu}, k n\right)$ and support-union at most $s_{1}:=\binom{k+k n / 4}{k}$.
- This means, in notation: $U_{\mathbb{F}}\left(f_{d}, r, s_{0}\right) \leq s_{1}$.
- Choose μ appropriately so that $s_{0} \leq d^{\delta_{1}}$ and $s_{1}<d / r^{\delta_{2}}$.
- This means, $U_{\mathbb{F}}\left(f_{d}, r, d^{\delta_{1}}\right)<d / r^{\delta_{2}}$ for infinitely many $d \in I_{r}$, a contradiction!

Finishing Theorem 2

- f_{d} has sum of r-th power representation with top fan-in $s_{0}:=\operatorname{poly}\left(d^{1 / \mu}, k n\right)$ and support-union at most $s_{1}:=\binom{k+k n / 4}{k}$.
- This means, in notation: $U_{\mathbb{F}}\left(f_{d}, r, s_{0}\right) \leq s_{1}$.
- Choose μ appropriately so that $s_{0} \leq d^{\delta_{1}}$ and $s_{1}<d / r^{\delta_{2}}$.
- This means, $U_{\mathbb{F}}\left(f_{d}, r, d^{\delta_{1}}\right)<d / r^{\delta_{2}}$ for infinitely many $d \in I_{r}$, a contradiction!
- $P_{k, n}$ is exponentially hard i.e. $\operatorname{size}\left(P_{k, n}\right) \geq d^{1 / \mu}=2^{\Omega(n)}$. Thus, it cannot be in VP.

Finishing Theorem 2

- f_{d} has sum of r-th power representation with top fan-in $s_{0}:=\operatorname{poly}\left(d^{1 / \mu}, k n\right)$ and support-union at most $s_{1}:=\binom{k+k n / 4}{k}$.
- This means, in notation: $U_{\mathbb{F}}\left(f_{d}, r, s_{0}\right) \leq s_{1}$.
- Choose μ appropriately so that $s_{0} \leq d^{\delta_{1}}$ and $s_{1}<d / r^{\delta_{2}}$.
- This means, $U_{\mathbb{F}}\left(f_{d}, r, d^{\delta_{1}}\right)<d / r^{\delta_{2}}$ for infinitely many $d \in I_{r}$, a contradiction!
- $P_{k, n}$ is exponentially hard i.e. $\operatorname{size}\left(P_{k, n}\right) \geq d^{1 / \mu}=2^{\Omega(n)}$. Thus, it cannot be in VP.
- Instead of 25-CNF, we could have used 5-CNF, then $s_{1}:=\binom{k+k n / 2}{k}$ which is $>d$. Thus, $r \geq 25$ is required!

Conclusion

Conclusion

Conclusion

- We showed that for $r=2$, Conjecture C 1 implies matrix rigidity.

Conclusion

- We showed that for $r=2$, Conjecture C 1 implies matrix rigidity. Could we solve the conjecture for special cases like constant some of powers?

Conclusion

- We showed that for $r=2$, Conjecture C 1 implies matrix rigidity. Could we solve the conjecture for special cases like constant some of powers?
- Is C1 true for random f over \mathbb{Q} ?

Conclusion

- We showed that for $r=2$, Conjecture C 1 implies matrix rigidity. Could we solve the conjecture for special cases like constant some of powers?
- Is C 1 true for random f over \mathbb{Q} ? over \mathbb{C} ?

Conclusion

- We showed that for $r=2$, Conjecture C 1 implies matrix rigidity. Could we solve the conjecture for special cases like constant some of powers?
- Is C 1 true for random f over \mathbb{Q} ? over \mathbb{C} ?
- Can we improve the exponent 25 ?

Conclusion

- We showed that for $r=2$, Conjecture C 1 implies matrix rigidity. Could we solve the conjecture for special cases like constant some of powers?
- Is C 1 true for random f over \mathbb{Q} ? over \mathbb{C} ?
- Can we improve the exponent 25? Very recently, Dutta and Saxena improved 25 to 4.

Conclusion

- We showed that for $r=2$, Conjecture C 1 implies matrix rigidity. Could we solve the conjecture for special cases like constant some of powers?
- Is $\mathbb{C} 1$ true for random f over \mathbb{Q} ? over \mathbb{C} ?
- Can we improve the exponent 25? Very recently, Dutta and Saxena improved 25 to 4 . Can we improve further to 3 (or 2)?

Conclusion

- We showed that for $r=2$, Conjecture C 1 implies matrix rigidity. Could we solve the conjecture for special cases like constant some of powers?
- Is C 1 true for random f over \mathbb{Q} ? over \mathbb{C} ?
- Can we improve the exponent 25? Very recently, Dutta and Saxena improved 25 to 4 . Can we improve further to 3 (or 2)?
- Can we remove GRH for $(x+1)^{d}$?

Conclusion

- We showed that for $r=2$, Conjecture C 1 implies matrix rigidity. Could we solve the conjecture for special cases like constant some of powers?
- Is C 1 true for random f over \mathbb{Q} ? over \mathbb{C} ?
- Can we improve the exponent 25? Very recently, Dutta and Saxena improved 25 to 4 . Can we improve further to 3 (or 2)?
- Can we remove GRH for $(x+1)^{d}$?
- Be ambitious. Prove Conjecture C1!

Conclusion

- We showed that for $r=2$, Conjecture C 1 implies matrix rigidity. Could we solve the conjecture for special cases like constant some of powers?
- Is C 1 true for random f over \mathbb{Q} ? over \mathbb{C} ?
- Can we improve the exponent 25? Very recently, Dutta and Saxena improved 25 to 4 . Can we improve further to 3 (or 2)?
- Can we remove GRH for $(x+1)^{d}$?
- Be ambitious. Prove Conjecture C1!
\#StaySafe ${ }^{\wedge}$

