
Reachability and Strong-connectivity  
under Failures

Keerti Choudhary
(Weizmann Institute Tel Aviv University)

Based upon..

• Surender Baswana, Keerti Choudhary, Liam Roditty: Fault tolerant
subgraph for single source reachability: generic and optimal.  
STOC 2016 and SICOMP 2018.

• Surender Baswana, Keerti Choudhary, Liam Roditty: An Efficient
Strongly Connected Components Algorithm in the Fault Tolerant Model.
ICALP 2017 and and Algorithmica 2019.

Fundamental Graph Problems

Fundamental  
Graph  

Problems

Fundamental Graph Problems

Reachability

Fundamental  
Graph  

Problems

Fundamental Graph Problems

Reachability Shortest-path

Fundamental  
Graph  

Problems

Fundamental Graph Problems

Reachability Shortest-path

Fundamental  
Graph  

Problems

Max-flows

Fundamental Graph Problems

Reachability

minimum-cut

Shortest-path

Fundamental  
Graph  

Problems

Max-flows

Fundamental Graph Problems

Reachability

minimum-cut

Connectivity

Shortest-path

Fundamental  
Graph  

Problems

Max-flows

Fundamental Graph Problems

Reachability

minimum-cut

Connectivity

strong-connectivity

Shortest-path

Fundamental  
Graph  

Problems

Max-flows

Fundamental Graph Problems

Reachability

minimum-cut

Connectivity

strong-connectivity

Shortest-path

Fundamental  
Graph  

Problems

Max-flows

Fundamental Graph Problems

Matching

We already  
have  

efficient solutions..

Reachability

minimum-cut

Connectivity

strong-connectivity

Shortest-path

Fundamental  
Graph  

Problems

Max-flows

Fundamental Graph Problems

Matching

What if there  
are faults?

Reachability

minimum-cut

Connectivity

strong-connectivity

Shortest-path

Fundamental  
Graph  

Problems

Max-flows

Fundamental Graph Problems

Matching

Fault Tolerant Model

G

Fault Tolerant Model

G k = 2(Faults)

Fault Tolerant Model

G k = 2(Faults)

Time 0

Fault Tolerant Model

G k = 2(Faults)

Time 1

Fault Tolerant Model

G k = 2(Faults)

Time 2

Fault Tolerant Model

G

Time 3

k = 2(Faults)

Fault Tolerant Model

G

Answer queries of the form:
• Exact/approximate distances
• Maximally Independent Set
• Minimum Spanning-tree

Time 3

k = 2(Faults)

Fault Tolerant Model

G

Answer queries of the form:
• Exact/approximate distances
• Maximally Independent Set
• Minimum Spanning-tree

Naive approach
Re-compute the solution

 at each time.

Time 3

k = 2(Faults)

Fault Tolerant Model

G

Answer queries of the form:
• Exact/approximate distances
• Maximally Independent Set
• Minimum Spanning-tree

Naive approach
Re-compute the solution

 at each time.

O(m) at each
step!

Time 3

k = 2(Faults)

Fault Tolerant Model

Fault Tolerant Model

Why should we learn this model?

Fault Tolerant Model

Why should we learn this model?

Dynamic graph algorithms models:

• Fully dynamic – An update is an edge insertion or deletion
• Decremental – An update is an edge deletion
• Incremental – An update is an edge insertion

Fault Tolerant Model

Dynamic Model: An Example

Dynamic Model: An Example

Dynamic Model: An Example

Dynamic Model: An Example

Dynamic Model: An Example

Dynamic Model: An Example

…

Dynamic Model: An Example

…

Dynamic Model: An Example

…

…

Dynamic Model: An Example

…

…

Dynamic Model: An Example

…

…

Dynamic Model: An Example

…

…

Dynamic Model: An Example

…

…

Dynamic Model: An Example

…

…

Fault Tolerant Model

Fully dynamic / Dec / Inc model

Too general

Fault Tolerant Model

Fully dynamic / Dec / Inc model

Too general

In many real world networks changes are very limited and transient

Road networks, communication networks etc.

Fault Tolerant Model

Fully dynamic / Dec / Inc model

Fault Tolerant Oracle

G

Fault Tolerant Oracle

Preprocessing

G

Fault Tolerant Oracle

Preprocessing

G

Fault Tolerant Oracle

Oracle

Preprocessing

Query

G

Fault Tolerant Oracle

Oracle

Preprocessing

Query

G

Fault Tolerant Oracle

Oracle

Answer

Preprocessing

Query

G

Fault Tolerant Oracle

Oracle

Answer

Distance 
Oracle

Preprocessing

Vertex pair (x,y) 
failure set = F

G

Fault Tolerant Oracle

Distance Oracle

Distance(x,y,G\F)

Preprocessing

Vertex pair (x,y) 
failure set = F

G

Fault Tolerant Oracle

Distance Oracle

Distance(x,y,G\F)

Objectives:

Preprocessing

Vertex pair (x,y) 
failure set = F

G

Fault Tolerant Oracle

Distance Oracle

Distance(x,y,G\F)

Efficient query time

Objectives:

Preprocessing

Vertex pair (x,y) 
failure set = F

G

Fault Tolerant Oracle

Distance Oracle

Distance(x,y,G\F)

Efficient query time

Compact space

Objectives:

Fault Tolerant Oracle

Vertex pair (x,y) 
failure set = F

Distance Oracle

Distance(x,y,G\F)

Trivial Solutions:

Fault Tolerant Oracle

Vertex pair (x,y) 
failure set = F

Distance Oracle

Distance(x,y,G\F)

Trivial Solutions:

Fault Tolerant Oracle

Vertex pair (x,y) 
failure set = F

Distance Oracle

Distance(x,y,G\F)
Compute &
Store ALL
solutions

Store  
only  

graph G

Trivial Solutions:

Fault Tolerant Oracle

Vertex pair (x,y) 
failure set = F

Distance Oracle

Distance(x,y,G\F)

Space = O(nCk .n2)

Time = O(1)

Compute &
Store ALL
solutions

Store  
only  

graph G

Trivial Solutions:

Fault Tolerant Oracle

Vertex pair (x,y) 
failure set = F

Distance Oracle

Distance(x,y,G\F)

Space = O(nCk .n2)

Time = O(1)

Space = O(m+n)

Time = O(m+n)

Compute &
Store ALL
solutions

Store  
only  

graph G

Trivial Solutions:

Fault Tolerant Oracle

Vertex pair (x,y) 
failure set = F

Distance Oracle

Distance(x,y,G\F)

Space = O(nCk .n2)

Time = O(1)

Space = O(m+n)

Time = O(m+n)

Compute &
Store ALL
solutions

Store  
only  

graph G

Fault Tolerant Preservers

G H

Compute

Fault Tolerant Preservers

G H

Compute

H\F preserves a 
“pre-specified property”  

of G\F, 
for all possible F, |F| k

Previous Works

Many works in the recent decade (partial list):

Previous Works

Many works in the recent decade (partial list):

Demetrescu, Thorup, Chowdhury, Ramachandran (SICOMP 2008) APSP – one fault

Previous Works

Many works in the recent decade (partial list):

Demetrescu, Thorup, Chowdhury, Ramachandran (SICOMP 2008) APSP – one fault

Bernstein, Karger (SODA’08, STOC’09) – Improved running time

Previous Works

Many works in the recent decade (partial list):

Demetrescu, Thorup, Chowdhury, Ramachandran (SICOMP 2008) APSP – one fault

Bernstein, Karger (SODA’08, STOC’09) – Improved running time

Patrascu, Thorup, (FOCS’07) – Connectivity

Previous Works

Many works in the recent decade (partial list):

Demetrescu, Thorup, Chowdhury, Ramachandran (SICOMP 2008) APSP – one fault

Bernstein, Karger (SODA’08, STOC’09) – Improved running time

Chechik (Inf. Comp 2013) – Compact routing schemes

Patrascu, Thorup, (FOCS’07) – Connectivity

Previous Works

Many works in the recent decade (partial list):

Demetrescu, Thorup, Chowdhury, Ramachandran (SICOMP 2008) APSP – one fault

Bernstein, Karger (SODA’08, STOC’09) – Improved running time

Chechik (Inf. Comp 2013) – Compact routing schemes
Dinitz, Krauthgamer: (PODC’11) – Spanners

Patrascu, Thorup, (FOCS’07) – Connectivity

Previous Works

Many works in the recent decade (partial list):

Demetrescu, Thorup, Chowdhury, Ramachandran (SICOMP 2008) APSP – one fault

Bernstein, Karger (SODA’08, STOC’09) – Improved running time

Chechik (Inf. Comp 2013) – Compact routing schemes
Dinitz, Krauthgamer: (PODC’11) – Spanners

Patrascu, Thorup, (FOCS’07) – Connectivity

Georgiadis, Italiano, Parotsidis: (SODA’17) – Strong connectivity – one fault

Previous Works

Many works in the recent decade (partial list):

Demetrescu, Thorup, Chowdhury, Ramachandran (SICOMP 2008) APSP – one fault

Bernstein, Karger (SODA’08, STOC’09) – Improved running time

Chechik (Inf. Comp 2013) – Compact routing schemes
Dinitz, Krauthgamer: (PODC’11) – Spanners

Patrascu, Thorup, (FOCS’07) – Connectivity

Georgiadis, Italiano, Parotsidis: (SODA’17) – Strong connectivity – one fault

Bodwin, Grandoni, Parter, V. William: (ICALP’17) – Distances

This Talk

Problems of Reachability and strong-connectivity:

This Talk

Problems of Reachability and strong-connectivity:

Single-Source
Reachability (SSR)

Preserver 
Problem 1

This Talk

Problems of Reachability and strong-connectivity:

Single-Source
Reachability (SSR)

Preserver 
Problem 1

Strong-connectivity  
oracle

Problem 2

Our Contributions

Problem 1: Reachability Preserver

Input: directed graph G=(V,E), parameter k, and a source s.

Problem 1: Reachability Preserver

Input: directed graph G=(V,E), parameter k, and a source s.

Output: a sparse subgraph H of G that on any set F of k edges satisfies:

Problem 1: Reachability Preserver

Input: directed graph G=(V,E), parameter k, and a source s.

Output: a sparse subgraph H of G that on any set F of k edges satisfies:

s

G\F

t

s

H\F

t

for every t ∈ V

Problem 1: Reachability Preserver

Input: directed graph G=(V,E), parameter k, and a source s.

Output: a sparse subgraph H of G that on any set F of k edges satisfies:

s

G\F

t

s

H\F

t

for every t ∈ V

Problem 1: Reachability Preserver

Example:

Input: directed graph G=(V,E), parameter k, and a source s.

Output: a sparse subgraph H of G that on any set F of k edges satisfies:

s

G\F

t

s

H\F

t

for every t ∈ V

Problem 1: Reachability Preserver

s

G

Example:

Input: directed graph G=(V,E), parameter k, and a source s.

Output: a sparse subgraph H of G that on any set F of k edges satisfies:

s

G\F

t

s

H\F

t

for every t ∈ V

Problem 1: Reachability Preserver

s

G

Example:

Input: directed graph G=(V,E), parameter k, and a source s.

Output: a sparse subgraph H of G that on any set F of k edges satisfies:

s

G\F

t

s

H\F

t

for every t ∈ V

Problem 1: Reachability Preserver

s s

G 1-FT-Preserver

Example:

Input: directed graph G=(V,E), parameter k, and a source s.

Output: a sparse subgraph H of G that on any set F of k edges satisfies:

s

G\F

t

s

H\F

t

for every t ∈ V

Problem 1: Reachability Preserver

s s

G 1-FT-Preserver

Example:

Input: directed graph G=(V,E), parameter k, and a source s.

Output: a sparse subgraph H of G that on any set F of k edges satisfies:

s

G\F

t

s

H\F

t

for every t ∈ V

Problem 1: Reachability Preserver

Prior Work:

[Lengauer and Tarjan
(1979)]:

• k=1 (single failure)

• An upper bound of (2n)

Input: directed graph G=(V,E), parameter k, and a source s.

Output: a sparse subgraph H of G that on any set F of k edges satisfies:

s

G\F

t

s

H\F

t

for every t ∈ V

Problem 1: Reachability Preserver

Prior Work:

[Lengauer and Tarjan
(1979)]:

• k=1 (single failure)

• An upper bound of (2n)

Input: directed graph G=(V,E), parameter k, and a source s.

Output: a sparse subgraph H of G that on any set F of k edges satisfies:

s

G\F

t

s

H\F

t

for every t ∈ V

Problem 1: Reachability Preserver

Our Results for general k:

Prior Work:

[Lengauer and Tarjan
(1979)]:

• k=1 (single failure)

• An upper bound of (2n)

Input: directed graph G=(V,E), parameter k, and a source s.

Output: a sparse subgraph H of G that on any set F of k edges satisfies:

s

G\F

t

s

H\F

t

for every t ∈ V

Problem 1: Reachability Preserver

Our Results for general k:

Upper Bound:

Prior Work:

[Lengauer and Tarjan
(1979)]:

• k=1 (single failure)

• An upper bound of (2n)

Input: directed graph G=(V,E), parameter k, and a source s.

Output: a sparse subgraph H of G that on any set F of k edges satisfies:

s

G\F

t

s

H\F

t

for every t ∈ V

Problem 1: Reachability Preserver

Our Results for general k:

O(2k n) edgesUpper Bound:

Prior Work:

[Lengauer and Tarjan
(1979)]:

• k=1 (single failure)

• An upper bound of (2n)

Input: directed graph G=(V,E), parameter k, and a source s.

Output: a sparse subgraph H of G that on any set F of k edges satisfies:

s

G\F

t

s

H\F

t

for every t ∈ V

Problem 1: Reachability Preserver

Our Results for general k:

O(2k n) edgesUpper Bound:

Lower Bound:

Prior Work:

[Lengauer and Tarjan
(1979)]:

• k=1 (single failure)

• An upper bound of (2n)

Input: directed graph G=(V,E), parameter k, and a source s.

Output: a sparse subgraph H of G that on any set F of k edges satisfies:

s

G\F

t

s

H\F

t

for every t ∈ V

Problem 1: Reachability Preserver

Our Results for general k:

O(2k n) edges

Existential bound of Ω(2k n) edges

Upper Bound:

Lower Bound:

Problem 1: Reachability Preserver
Implication (i):

Problem 1: Reachability Preserver
Implication (i):

Reachability  
Oracle

Problem 1: Reachability Preserver
Implication (i):

Reachability  
OracleFailure set F Vertices reachable

from s in (G\F)

Problem 1: Reachability Preserver
Implication (i):

Reachability  
OracleFailure set F Vertices reachable

from s in (G\F)

Store SSR Preserver  
w.r.t source s

Problem 1: Reachability Preserver
Implication (i):

Reachability  
OracleFailure set F Vertices reachable

from s in (G\F)

Store SSR Preserver  
w.r.t source s

O(2k n) time!Time:

Problem 1: Reachability Preserver
Implication (i):

Reachability  
OracleFailure set F Vertices reachable

from s in (G\F)

Store SSR Preserver  
w.r.t source s

O(2k n) time!Time:

 O(2k n)Space:

Problem 1: Reachability Preserver
Implication (ii):

Problem 1: Reachability Preserver
Implication (ii):

SCC  
Oracle

Problem 1: Reachability Preserver
Implication (ii):

SCC  
OracleVertex y, set F SCC of y in (G\F)

Problem 1: Reachability Preserver
Implication (ii):

SCC  
OracleVertex y, set F SCC of y in (G\F)

Store ALL SSR Preservers
w.r.t. G as well G-reverse

Problem 1: Reachability Preserver
Implication (ii):

SCC  
OracleVertex y, set F SCC of y in (G\F)

Store ALL SSR Preservers
w.r.t. G as well G-reverse

O(2k n) time!Time:

Problem 1: Reachability Preserver
Implication (ii):

SCC  
OracleVertex y, set F SCC of y in (G\F)

Store ALL SSR Preservers
w.r.t. G as well G-reverse

O(2k n) time!Time:

 O(2k n2)Space:

Problem 1: Reachability Preserver
Proof Snippet

Problem 1: Reachability Preserver
Proof Snippet

Farthest min-cut

Problem 1: Reachability Preserver
Proof Snippet

Farthest min-cut

v

s

Problem 1: Reachability Preserver
Proof Snippet

Farthest min-cut

v

s

Problem 1: Reachability Preserver
Proof Snippet

Farthest min-cut

v

s

Problem 1: Reachability Preserver
Proof Snippet

Farthest min-cut

v

s

Problem 1: Reachability Preserver
Proof Snippet

Farthest min-cut

v

s

Set A

Problem 1: Reachability Preserver
Proof Snippet

Farthest min-cut

v

s

Set A

Set B

Problem 1: Reachability Preserver
Proof Snippet

Farthest min-cut

v

s

Set A

Set B

The min cut {A,B} for which
the set A is of maximum size.

Definition

Problem 1: Reachability Preserver
Proof Snippet

Farthest min-cut

v

s

Farthest  
(s,v)-min-cut

Set A

Set B

The min cut {A,B} for which
the set A is of maximum size.

Definition

Problem 1: Reachability Preserver
Proof Snippet

Farthest min-cut

v

s

Farthest  
(s,v)-min-cut

Set A

Set B

The min cut {A,B} for which
the set A is of maximum size.

Definition

Characterisation

Vertex w lies in B, iff w

Problem 1: Reachability Preserver
Proof Snippet

Farthest min-cut

v

s

Farthest  
(s,v)-min-cut

Set A

Set B

The min cut {A,B} for which
the set A is of maximum size.

Definition

Characterisation

Vertex w lies in B, iff w

Problem 1: Reachability Preserver
Proof Snippet

Farthest min-cut

v

s

Farthest  
(s,v)-min-cut

Set A

Set B

The min cut {A,B} for which
the set A is of maximum size.

Definition

Characterisation

Vertex w lies in B, iff w
max-flow(G+(s,w)) > max-flow(G)

Problem 1: Reachability Preserver
Proof Snippet

In-degree at most: (k+1)!
Problem 1: Reachability Preserver
Proof Snippet

In-degree at most: (k+1)!
Problem 1: Reachability Preserver
Proof Snippet

Bottleneck: s x v - preserver , with bounded in-degree(v)

In-degree at most: (k+1)!
Problem 1: Reachability Preserver
Proof Snippet

Bottleneck: s x v - preserver , with bounded in-degree(v)

s x V(G) - preserver

In-degree at most: (k+1)!
Problem 1: Reachability Preserver
Proof Snippet

Bottleneck: s x v - preserver , with bounded in-degree(v)

s x V(G) - preserver

Preserves reachability from s to each vertex of G

In-degree at most: (k+1)!
Problem 1: Reachability Preserver
Proof Snippet

Bottleneck: s x v - preserver , with bounded in-degree(v)

s x V(G) - preserver

Preserves reachability from s to each vertex of G

upon failure of at most k edges

In-degree at most: (k+1)!
Problem 1: Reachability Preserver
Proof Snippet

Bottleneck: s x v - preserver , with bounded in-degree(v)

s x V(G) - preserver

Preserves reachability from s to each vertex of G

upon failure of at most k edges

Main Goal

In-degree at most: (k+1)!
Problem 1: Reachability Preserver
Proof Snippet

Bottleneck: s x v - preserver , with bounded in-degree(v)

s x V(G) - preserver

Preserves reachability from s to each vertex of G

upon failure of at most k edges

Main Goal
s x V(G) - preserver in which  
in-degree of each vertex is

bounded

In-degree at most: (k+1)!
Problem 1: Reachability Preserver
Proof Snippet

Bottleneck: s x v - preserver , with bounded in-degree(v)

s x V(G) - preserver

Preserves reachability from s to each vertex of G

upon failure of at most k edges

Main Goal
s x V(G) - preserver in which  
in-degree of each vertex is

bounded

In-degree at most: (k+1)!
Problem 1: Reachability Preserver
Proof Snippet

Bottleneck: s x v - preserver , with bounded in-degree(v)

s x V(G) - preserver s x v - preserver

Preserves reachability from s to each vertex of G

upon failure of at most k edges

Main Goal
s x V(G) - preserver in which  
in-degree of each vertex is

bounded

In-degree at most: (k+1)!
Problem 1: Reachability Preserver
Proof Snippet

Bottleneck: s x v - preserver , with bounded in-degree(v)

s x V(G) - preserver s x v - preserver

Preserves reachability from s to each vertex of G

upon failure of at most k edges

Preserves reachability from s to only v

Main Goal
s x V(G) - preserver in which  
in-degree of each vertex is

bounded

In-degree at most: (k+1)!
Problem 1: Reachability Preserver
Proof Snippet

Bottleneck: s x v - preserver , with bounded in-degree(v)

s x V(G) - preserver s x v - preserver

Preserves reachability from s to each vertex of G

upon failure of at most k edges

Preserves reachability from s to only v

Main Goal
s x V(G) - preserver in which  
in-degree of each vertex is

bounded

upon failure of at most k edges

In-degree at most: (k+1)!
Problem 1: Reachability Preserver
Proof Snippet

Bottleneck: s x v - preserver , with bounded in-degree(v)

s x V(G) - preserver s x v - preserver

Preserves reachability from s to each vertex of G

upon failure of at most k edges

Preserves reachability from s to only v

Main Goal
s x V(G) - preserver in which  
in-degree of each vertex is

bounded

A Simpler Problem

upon failure of at most k edges

In-degree at most: (k+1)!
Problem 1: Reachability Preserver
Proof Snippet

Bottleneck: s x v - preserver , with bounded in-degree(v)

s x V(G) - preserver s x v - preserver

Preserves reachability from s to each vertex of G

upon failure of at most k edges

Preserves reachability from s to only v

Main Goal
s x V(G) - preserver in which  
in-degree of each vertex is

bounded

A Simpler Problem

s x v - preserver in which  
in-degree of only v is bounded

upon failure of at most k edges

In-degree at most: (k+1)!
Problem 1: Reachability Preserver
Proof Snippet

Bottleneck: s x v - preserver , with bounded in-degree(v)

s x V(G) - preserver s x v - preserver

Preserves reachability from s to each vertex of G

upon failure of at most k edges

Preserves reachability from s to only v

Main Goal
s x V(G) - preserver in which  
in-degree of each vertex is

bounded

A Simpler Problem

s x v - preserver in which  
in-degree of only v is bounded

upon failure of at most k edges

Problem 1: Reachability Preserver
Proof Snippet In-degree at most: (k+1)!

Bottleneck: s x v - preserver , with bounded in-degree(v)

Problem 1: Reachability Preserver
Proof Snippet

Case 1: Max-Flow(s,v) ≥ k+1

In-degree at most: (k+1)!

Bottleneck: s x v - preserver , with bounded in-degree(v)

v

s

1 2 … k+1 …

Problem 1: Reachability Preserver
Proof Snippet

Case 1: Max-Flow(s,v) ≥ k+1

In-degree at most: (k+1)!

Bottleneck: s x v - preserver , with bounded in-degree(v)

v

s

1 2 … k+1 …

Problem 1: Reachability Preserver
Proof Snippet

Case 1: Max-Flow(s,v) ≥ k+1

H = Union of any k+1 edge-disjoint paths

In-degree at most: (k+1)!

Bottleneck: s x v - preserver , with bounded in-degree(v)

In-degree at most: (k+1)!
Problem 1: Reachability Preserver
Proof Snippet

Bottleneck: s x v - preserver , with bounded in-degree(v)

In-degree at most: (k+1)!
Problem 1: Reachability Preserver
Proof Snippet

Case 2: Max-Flow(s,v) = r < k+1

Bottleneck: s x v - preserver , with bounded in-degree(v)

In-degree at most: (k+1)!
Problem 1: Reachability Preserver
Proof Snippet

Case 2: Max-Flow(s,v) = r < k+1

Bottleneck: s x v - preserver , with bounded in-degree(v)

• Let farthest Min-cut = {(a1,b1), …., (ar,br)}

v

s

a1

b1

a2

b2

In-degree at most: (k+1)!
Problem 1: Reachability Preserver
Proof Snippet

Case 2: Max-Flow(s,v) = r < k+1

Bottleneck: s x v - preserver , with bounded in-degree(v)

• Let farthest Min-cut = {(a1,b1), …., (ar,br)}

v

s

a1

b1

a2

b2

G1 := G+(s,b1)

In-degree at most: (k+1)!
Problem 1: Reachability Preserver
Proof Snippet

Case 2: Max-Flow(s,v) = r < k+1

Bottleneck: s x v - preserver , with bounded in-degree(v)

• Let farthest Min-cut = {(a1,b1), …., (ar,br)}

v

s

a1

b1

a2

b2

G1 := G+(s,b1)

In-degree at most: (k+1)!
Problem 1: Reachability Preserver
Proof Snippet

Case 2: Max-Flow(s,v) = r < k+1

Bottleneck: s x v - preserver , with bounded in-degree(v)

• Let farthest Min-cut = {(a1,b1), …., (ar,br)}

v

s

a1

b1

a2

b2

G1 := G+(s,b1)

v

s

a1

b1

a2

b2

In-degree at most: (k+1)!
Problem 1: Reachability Preserver
Proof Snippet

Case 2: Max-Flow(s,v) = r < k+1

Bottleneck: s x v - preserver , with bounded in-degree(v)

• Let farthest Min-cut = {(a1,b1), …., (ar,br)}

v

s

a1

b1

a2

b2

G1 := G+(s,b1)

v

s

a1

b1

a2

b2

In-degree at most: (k+1)!
Problem 1: Reachability Preserver
Proof Snippet

Case 2: Max-Flow(s,v) = r < k+1

Bottleneck: s x v - preserver , with bounded in-degree(v)

• Let farthest Min-cut = {(a1,b1), …., (ar,br)}

v

s

a1

b1

a2

b2

G1 := G+(s,b1)

v

s

a1

b1

a2

b2

G2 := G+(s,b2)

In-degree at most: (k+1)!
Problem 1: Reachability Preserver
Proof Snippet

Case 2: Max-Flow(s,v) = r < k+1

Bottleneck: s x v - preserver , with bounded in-degree(v)

• Let farthest Min-cut = {(a1,b1), …., (ar,br)}

v

s

a1

b1

a2

b2

G1 := G+(s,b1)

v

s

a1

b1

a2

b2

G2 := G+(s,b2)

• Find Preserver (say Hi) w.r.t. Gi = G+(s,bi)  

In-degree at most: (k+1)!
Problem 1: Reachability Preserver
Proof Snippet

Case 2: Max-Flow(s,v) = r < k+1

Bottleneck: s x v - preserver , with bounded in-degree(v)

• Let farthest Min-cut = {(a1,b1), …., (ar,br)}

v

s

a1

b1

a2

b2

G1 := G+(s,b1)

v

s

a1

b1

a2

b2

G2 := G+(s,b2)

• Find Preserver (say Hi) w.r.t. Gi = G+(s,bi)  

• SET: E(v,H) = U E(v,Hi)
i=1 to r

Problem 2: SCC Oracle

Input: directed graph G=(V,E), parameter k.

Output: a data-structure that on failure of any set F of k edges outputs:

Problem 2: SCC Oracle

Input: directed graph G=(V,E), parameter k.

Output: a data-structure that on failure of any set F of k edges outputs:

Strongly-connected-components (SCCs) of G\F

Problem 2: SCC Oracle

Input: directed graph G=(V,E), parameter k.

Output: a data-structure that on failure of any set F of k edges outputs:

Strongly-connected-components (SCCs) of G\F

Example (k=1)

Problem 2: SCC Oracle

Input: directed graph G=(V,E), parameter k.

Output: a data-structure that on failure of any set F of k edges outputs:

Strongly-connected-components (SCCs) of G\F

Example (k=1)

G

Problem 2: SCC Oracle

Input: directed graph G=(V,E), parameter k.

Output: a data-structure that on failure of any set F of k edges outputs:

Strongly-connected-components (SCCs) of G\F

Example (k=1)

G

Problem 2: SCC Oracle

Input: directed graph G=(V,E), parameter k.

Output: a data-structure that on failure of any set F of k edges outputs:

Strongly-connected-components (SCCs) of G\F

Example (k=1)

G SCCs in G\F

Problem 2: SCC Oracle

Input: directed graph G=(V,E), parameter k.

Output: a data-structure that on failure of any set F of k edges outputs:

Strongly-connected-components (SCCs) of G\F

Problem 2: SCC Oracle

Input: directed graph G=(V,E), parameter k.

Output: a data-structure that on failure of any set F of k edges outputs:

Strongly-connected-components (SCCs) of G\F

Prior Work:

[Italiano et al. (2017)]:
• k=1 (single failure)

• An oracle of O(n) size

• Reporting time is O(n)

Problem 2: SCC Oracle

Input: directed graph G=(V,E), parameter k.

Output: a data-structure that on failure of any set F of k edges outputs:

Strongly-connected-components (SCCs) of G\F

Prior Work:

[Italiano et al. (2017)]:
• k=1 (single failure)

• An oracle of O(n) size

• Reporting time is O(n)

Our Results for general k:

Problem 2: SCC Oracle

Input: directed graph G=(V,E), parameter k.

Output: a data-structure that on failure of any set F of k edges outputs:

Strongly-connected-components (SCCs) of G\F

Prior Work:

[Italiano et al. (2017)]:
• k=1 (single failure)

• An oracle of O(n) size

• Reporting time is O(n)

Our Results for general k:

Oracle:

Problem 2: SCC Oracle

Input: directed graph G=(V,E), parameter k.

Output: a data-structure that on failure of any set F of k edges outputs:

Strongly-connected-components (SCCs) of G\F

Prior Work:

[Italiano et al. (2017)]:
• k=1 (single failure)

• An oracle of O(n) size

• Reporting time is O(n)

Our Results for general k:

Ok(n2) sizeOracle:

Problem 2: SCC Oracle

Input: directed graph G=(V,E), parameter k.

Output: a data-structure that on failure of any set F of k edges outputs:

Strongly-connected-components (SCCs) of G\F

Prior Work:

[Italiano et al. (2017)]:
• k=1 (single failure)

• An oracle of O(n) size

• Reporting time is O(n)

Our Results for general k:

Ok(n2) sizeOracle:

Reporting time:

Problem 2: SCC Oracle

Input: directed graph G=(V,E), parameter k.

Output: a data-structure that on failure of any set F of k edges outputs:

Strongly-connected-components (SCCs) of G\F

Prior Work:

[Italiano et al. (2017)]:
• k=1 (single failure)

• An oracle of O(n) size

• Reporting time is O(n)

Our Results for general k:

Ok(n2) size

Ok(n)

Oracle:

Reporting time:

Problem 2: SCC Oracle
Proof Snippet

Bottleneck: SCCs intersecting fixed path P

Problem 2: SCC Oracle
Proof Snippet

Bottleneck: SCCs intersecting fixed path P

Lemma:  
  
If we can compute SCCs in G\F intersecting a path “P” in F(n,k) time,  
then, we can compute ALL the SCCs of G\F in O(F(n,k) log n) time.

Problem 2: SCC Oracle
Proof Snippet

Bottleneck: SCCs intersecting fixed path P

Problem 2: SCC Oracle
Proof Snippet

Bottleneck: SCCs intersecting fixed path P

w

Problem 2: SCC Oracle
Proof Snippet

Bottleneck: SCCs intersecting fixed path P

vertices
reachable
from w in

G\F
w

V1 =

Problem 2: SCC Oracle
Proof Snippet

Bottleneck: SCCs intersecting fixed path P

vertices
reachable
from w in

G\F

vertices
having path
to w in G\F

w

=V2 V1 =

Problem 2: SCC Oracle
Proof Snippet

Bottleneck: SCCs intersecting fixed path P

vertices
reachable
from w in

G\F

vertices
having path
to w in G\F

w

=V2 V1 =

SCC(w)

Proof Snippet
Problem 2: SCC Oracle

Bottleneck: SCCs intersecting fixed path P

vertices
reachable
from w in

G\F

vertices
having path
to w in G\F

w

=V2 V1 =

SCC(w)

V1 \ SCC(w)V2 \ SCC(w)

Proof Snippet
Problem 2: SCC Oracle

Bottleneck: SCCs intersecting fixed path P

vertices
reachable
from w in

G\F

vertices
having path
to w in G\F

w

=V2 V1 =

SCC(w)

In O(2k n) time — divide problem into two sub-problems

V1 \ SCC(w)V2 \ SCC(w)

Proof Snippet
Problem 2: SCC Oracle

Bottleneck: SCCs intersecting fixed path P

vertices
reachable
from w in

G\F

vertices
having path
to w in G\F

w

=V2 V1 =

SCC(w)

In O(2k n) time — divide problem into two sub-problems

Recursively solve in O(2k n log |P|) time

V1 \ SCC(w)V2 \ SCC(w)

Proof Snippet
Problem 2: SCC Oracle

Computing all SCCs

Lemma:  
  
If we can compute SCCs in G\F intersecting a path “P” in F(n,k) time,  
then, we can compute ALL the SCCs of G\F in O(F(n,k) log n) time.

Proof Snippet
Problem 2: SCC Oracle

Computing all SCCs

Main Result:  
  
For any set F of k failures, we can compute SCCs of graph G\F in  
 O(2kn log2n) time.

Lemma:  
  
If we can compute SCCs in G\F intersecting a path “P” in F(n,k) time,  
then, we can compute ALL the SCCs of G\F in O(F(n,k) log n) time.

Proof Snippet
Problem 2: SCC Oracle

Computing all SCCs

Main Result:  
  
For any set F of k failures, we can compute SCCs of graph G\F in  
 O(2kn log2n) time.

Size of the oracle is O(2kn2).

Lemma:  
  
If we can compute SCCs in G\F intersecting a path “P” in F(n,k) time,  
then, we can compute ALL the SCCs of G\F in O(F(n,k) log n) time.

Thank You

