Reachability and Strong-connectivity under Failures

Keerti Choudhary
(Weizmann Institute \rightarrow Tel Aviv University)

Based upon..

- Surender Baswana, Keerti Choudhary, Liam Roditty: Fault tolerant subgraph for single source reachability: generic and optimal. STOC 2016 and SICOMP 2018.
- Surender Baswana, Keerti Choudhary, Liam Roditty: An Efficient Strongly Connected Components Algorithm in the Fault Tolerant Model. ICALP 2017 and and Algorithmica 2019.

Fundamental Graph Problems

Fundamental Graph Problems

Problems

Fundamental Graph Problems

Reachability

Fundamental
Graph
Problems

Fundamental Graph Problems

Reachability

Shortest-path

Fundamental
Graph
Problems

Fundamental Graph Problems

Reachability

Shortest-path
Max-flows

Fundamental
Graph
Problems

Fundamental Graph Problems

Reachability

Shortest-path

Fundamental
Graph
Problems
minimum-cut

Fundamental Graph Problems

Reachability

Shortest-path

Fundamental
Graph
Problems

Max-flows
minimum-cut
Connectivity

Fundamental Graph Problems

Reachability
 Shortest-path

Fundamental
Graph
Problems

Max-flows
minimum-cut
Connectivity
strong-connectivity

Fundamental Graph Problems

Fundamental
Graph
Problems

Shortest-path
Reachability
Max-flows
minimum-cut
Connectivity
strong-connectivity
Matching

Fundamental Graph Problems

Reachability
Shortest-path

Fundamental
Graph
Problems

Max-flows
minimum-cut
Connectivity
strong-connectivity
We already
have
efficient solutions..

Fundamental Graph Problems

Reachability
Shortest-path

Fundamental
Graph
Problems

Max-flows
minimum-cut

Connectivity

What if there
Matching are faults?

Fault Tolerant Model

Fault Tolerant Model

G

Fault Tolerant Model

G
$k=2$ (Faults)

Fault Tolerant Model

G
$k=2$ (Faults)

Time 0

Fault Tolerant Model

G
$k=2$ (Faults)

Time 1

Fault Tolerant Model

G
$k=2$ (Faults)

Time 2

Fault Tolerant Model

G
$k=2$ (Faults)

Time 3

Fault Tolerant Model

G
$k=2$ (Faults)

Answer queries of the form:

- Exact/approximate distances
- Maximally Independent Set
- Minimum Spanning-tree

Time 3

Fault Tolerant Model

G

Answer queries of the form:

- Exact/approximate distances
- Maximally Independent Set
- Minimum Spanning-tree

Naive approach
Re-compute the solution at each time.

Time 3

Fault Tolerant Model

G

$k=2$ (Faults)

Answer queries of the form:

- Exact/approximate distances
- Maximally Independent Set
- Minimum Spanning-tree

Naive approach
Re-compute the solution at each time.
$O(m)$ at each step!

Time 3

Fault Tolerant Model

Fault Tolerant Model

Why should we learn this model?

Fault Tolerant Model

Why should we learn this model?

Dynamic graph algorithms models:

- Fully dynamic - An update is an edge insertion or deletion
- Decremental - An update is an edge deletion
- Incremental - An update is an edge insertion

Dynamic Model: An Example

Dynamic Model: An Example

Dynamic Model: An Example

Dynamic Model: An Example

Dynamic Model: An Example

Dynamic Model: An Example

Dynamic Model: An Example

Dynamic Model: An Example

Dynamic Model: An Example

Dynamic Model: An Example

Dynamic Model: An Example

Dynamic Model: An Example

Dynamic Model: An Example

Fault Tolerant Model

Fully dynamic / Dec / Inc model

Fault Tolerant Model

Fully dynamic / Dec / Inc model
Too general

Fault Tolerant Model

Fully dynamic / Dec / Inc model
Too general

In many real world networks changes are very limited and transient
Road networks, communication networks etc.

Fault Tolerant Oracle

Fault Tolerant Oracle

G

Fault Tolerant Oracle

Fault Tolerant Oracle

G

Fault Tolerant Oracle

G

Fault Tolerant Oracle

Fault Tolerant Oracle

Trivial Solutions:

Fault Tolerant Oracle

Trivial Solutions:

 Store ALL solutions	Store only graph G

Distance($x, y, G \backslash F)$

Fault Tolerant Oracle

Trivial Solutions:

 Store ALL solutions	Store only graph G
Space $=\mathrm{O}\left({ }^{\mathrm{n}} \mathrm{C}_{\mathrm{k}} \cdot \mathrm{n}^{2}\right)$	
Time $=\mathrm{O}(1)$	

Distance ($x, y, G \backslash F)$

Fault Tolerant Oracle

Trivial Solutions:

 Store ALL solutions	Store only graph G
Space $=O\left({ }^{n} C_{k} \cdot n^{2}\right)$	Space $=O(m+n)$
Time $=O(1)$	Time $=O(m+n)$

Distance($x, y, G \backslash F)$

Fault Tolerant Oracle

Trivial Solutions:

 Store ALL solutions	Store only graph G
Space $=\mathrm{O}\left({ }^{n} \mathrm{C}_{\mathrm{k}} \cdot \mathrm{n}^{2}\right)$	$\underline{\text { Space }=\mathrm{O}(\mathrm{m}+\mathrm{n})}$
	Time $=\mathrm{O}(1)$

Distance($x, y, G \backslash F)$

Fault Tolerant Preservers

G
H

Fault Tolerant Preservers

Previous Works

Many works in the recent decade (partial list):

Previous Works

Many works in the recent decade (partial list):
Demetrescu, Thorup, Chowdhury, Ramachandran (SICOMP 2008) APSP - one fault

Previous Works

Many works in the recent decade (partial list):
Demetrescu, Thorup, Chowdhury, Ramachandran (SICOMP 2008) APSP - one fault
Bernstein, Karger (SODA'08, STOC'09) - Improved running time

Previous Works

Many works in the recent decade (partial list):
Demetrescu, Thorup, Chowdhury, Ramachandran (SICOMP 2008) APSP - one fault
Bernstein, Karger (SODA'08, STOC'09) - Improved running time
Patrascu, Thorup, (FOCS’07) - Connectivity

Previous Works

Many works in the recent decade (partial list):

Demetrescu, Thorup, Chowdhury, Ramachandran (SICOMP 2008) APSP - one fault
Bernstein, Karger (SODA'08, STOC'09) - Improved running time
Patrascu, Thorup, (FOCS’07) - Connectivity
Chechik (Inf. Comp 2013) - Compact routing schemes

Previous Works

Many works in the recent decade (partial list):

Demetrescu, Thorup, Chowdhury, Ramachandran (SICOMP 2008) APSP - one fault
Bernstein, Karger (SODA'08, STOC'09) - Improved running time
Patrascu, Thorup, (FOCS’07) - Connectivity
Chechik (Inf. Comp 2013) - Compact routing schemes
Dinitz, Krauthgamer: (PODC'11) - Spanners

Previous Works

Many works in the recent decade (partial list):

Demetrescu, Thorup, Chowdhury, Ramachandran (SICOMP 2008) APSP - one fault
Bernstein, Karger (SODA'08, STOC'09) - Improved running time
Patrascu, Thorup, (FOCS'07) - Connectivity
Chechik (Inf. Comp 2013) - Compact routing schemes
Dinitz, Krauthgamer: (PODC'11) - Spanners
Georgiadis, Italiano, Parotsidis: (SODA'17) - Strong connectivity - one fault

Previous Works

Many works in the recent decade (partial list):

Demetrescu, Thorup, Chowdhury, Ramachandran (SICOMP 2008) APSP - one fault
Bernstein, Karger (SODA'08, STOC'09) - Improved running time
Patrascu, Thorup, (FOCS'07) - Connectivity
Chechik (Inf. Comp 2013) - Compact routing schemes
Dinitz, Krauthgamer: (PODC'11) - Spanners
Georgiadis, Italiano, Parotsidis: (SODA'17) - Strong connectivity - one fault
Bodwin, Grandoni, Parter, V. William: (ICALP'17) - Distances

This Talk

Problems of Reachability and strong-connectivity:

This Talk

Problems of Reachability and strong-connectivity:

Single-Source

Reachability (SSR)
Preserver
Problem 1

This Talk

Problems of Reachability and strong-connectivity:

Single-Source Reachability (SSR)

Preserver
Problem 1

Our Contributions

Problem 1: Reachability Preserver

Problem 1: Reachability Preserver

Input: directed graph $G=(V, E)$, parameter k, and a source s.

Problem 1: Reachability Preserver

Input: directed graph $G=(V, E)$, parameter k, and a source s.

Output: a sparse subgraph \boldsymbol{H} of \boldsymbol{G} that on any set F of \boldsymbol{k} edges satisfies:

Problem 1: Reachability Preserver

Input: directed graph $G=(V, E)$, parameter k, and a source s.

Output: a sparse subgraph \boldsymbol{H} of \boldsymbol{G} that on any set F of \boldsymbol{k} edges satisfies:

Problem 1: Reachability Preserver

Input: directed graph $G=(V, E)$, parameter k, and a source s.

Output: a sparse subgraph H of G that on any set F of k edges satisfies:

Example:

Problem 1: Reachability Preserver

Input: directed graph $G=(V, E)$, parameter k, and a source s.

Output: a sparse subgraph H of G that on any set F of k edges satisfies:

for every $t \in \mathrm{~V}$

Example:

G

Problem 1: Reachability Preserver

Input: directed graph $G=(V, E)$, parameter k, and a source s.

Output: a sparse subgraph H of G that on any set F of k edges satisfies:

Example:

G

Problem 1: Reachability Preserver

Input: directed graph $G=(V, E)$, parameter k, and a source s.

Output: a sparse subgraph H of G that on any set F of k edges satisfies:

$\oint_{\delta_{t}}^{s} H \backslash F \quad$ for every $t \in \mathrm{~V}$

Example:

G

1-FT-Preserver

Problem 1: Reachability Preserver

Input: directed graph $G=(V, E)$, parameter k, and a source s.

Output: a sparse subgraph H of G that on any set F of k edges satisfies:

for every $t \in \mathrm{~V}$

Example:

G

1-FT-Preserver

Problem 1: Reachability Preserver

Input: directed graph $G=(V, E)$, parameter k, and a source s.

Output: a sparse subgraph \boldsymbol{H} of \boldsymbol{G} that on any set F of \boldsymbol{k} edges satisfies:

Problem 1: Reachability Preserver

Input: directed graph $G=(V, E)$, parameter k, and a source s.

Output: a sparse subgraph H of G that on any set F of \boldsymbol{k} edges satisfies:

 for every $t \in \mathrm{~V}$

Prior Work:

[Lengauer and Tarjan (1979)]:

- $\mathrm{k}=1$ (single failure)
- An upper bound of (2n)

Problem 1: Reachability Preserver

Input: directed graph $G=(V, E)$, parameter k, and a source s.

Output: a sparse subgraph H of G that on any set F of k edges satisfies:

$$
\text { for every } t \in \mathrm{~V}
$$

Prior Work:
[Lengauer and Tarjan (1979)]:

- $\mathrm{k}=1$ (single failure)
- An upper bound of (2n)

Problem 1: Reachability Preserver

Input: directed graph $G=(V, E)$, parameter k, and a source s.

Output: a sparse subgraph \boldsymbol{H} of \boldsymbol{G} that on any set F of \boldsymbol{k} edges satisfies:

Prior Work:
[Lengauer and Tarjan (1979)]:

- $\mathrm{k}=1$ (single failure)
- An upper bound of (2n)

Our Results for general k :

Upper Bound:

Problem 1: Reachability Preserver

Input: directed graph $G=(V, E)$, parameter k, and a source s.

Output: a sparse subgraph \boldsymbol{H} of \boldsymbol{G} that on any set F of \boldsymbol{k} edges satisfies:

Prior Work:

[Lengauer and Tarjan

 (1979)]:- $\mathrm{k}=1$ (single failure)
- An upper bound of (2n)

Our Results for general k :

Upper Bound: $O\left(2^{k} n\right)$ edges

Problem 1: Reachability Preserver

Input: directed graph $G=(V, E)$, parameter k, and a source s.

Output: a sparse subgraph \boldsymbol{H} of \boldsymbol{G} that on any set F of \boldsymbol{k} edges satisfies:

Prior Work:

[Lengauer and Tarjan

 (1979)]:- $\mathrm{k}=1$ (single failure)
- An upper bound of (2n)

Our Results for general k :

Upper Bound: $O\left(2^{k} n\right)$ edges
Lower Bound:

Problem 1: Reachability Preserver

Input: directed graph $G=(V, E)$, parameter k, and a source s.

Output: a sparse subgraph \boldsymbol{H} of \boldsymbol{G} that on any set F of \boldsymbol{k} edges satisfies:

Prior Work:

[Lengauer and Tarjan

 (1979)]:- $\mathrm{k}=1$ (single failure)
- An upper bound of (2n)

Our Results for general k :

Upper Bound: $\boldsymbol{O}\left(2^{k} n\right)$ edges
Lower Bound: Existential bound of $\Omega\left(2^{k} n\right)$ edges

Problem 1: Reachability Preserver

Implication (i):

Problem 1: Reachability Preserver

Implication (i):

Reachability Oracle

Problem 1: Reachability Preserver

Implication (i):

Failure set F

Problem 1: Reachability Preserver

Implication (i):

Failure set F

Problem 1: Reachability Preserver

Implication (i):

Time: $O\left(2^{k} n\right)$ time!

Problem 1: Reachability Preserver

Implication (i):

Time: $O\left(2^{k} n\right)$ time!
Space: $O\left(2^{k} n\right)$

Problem 1: Reachability Preserver

Implication (ii):

Problem 1: Reachability Preserver

Implication (ii):

Problem 1: Reachability Preserver

Implication (ii):

Vertex y, set F

Problem 1: Reachability Preserver

Implication (ii):

Problem 1: Reachability Preserver

Implication (ii):

Time: $O\left(2^{\mathrm{k}} \mathrm{n}\right)$ time!

Problem 1: Reachability Preserver

Implication (ii):

Time: $O\left(2^{k} n\right)$ time!
Space: $O\left(2^{k} n^{2}\right)$

Problem 1: Reachability Preserver

Proof Snippet

Farthest min-cut

Problem 1: Reachability Preserver

Proof Snippet

Farthest min-cut

Problem 1: Reachability Preserver

Proof Snippet

Farthest min-cut

Problem 1: Reachability Preserver

Proof Snippet

Farthest min-cut

Problem 1: Reachability Preserver

Proof Snippet

Farthest min-cut

Problem 1: Reachability Preserver

Proof Snippet

Farthest min-cut

Problem 1: Reachability Preserver

Proof Snippet

Farthest min-cut

Problem 1: Reachability Preserver

Proof Snippet

Farthest min-cut

Definition

The min cut $\{A, B\}$ for which the set A is of maximum size.

Problem 1: Reachability Preserver

Proof Snippet

Farthest min-cut

Definition

The min cut $\{A, B\}$ for which the set A is of maximum size.

Problem 1: Reachability Preserver

Proof Snippet

Farthest min-cut

Definition

The min cut $\{\boldsymbol{A}, \boldsymbol{B}\}$ for which the set A is of maximum size.

Characterisation

Vertex \boldsymbol{w} lies in \boldsymbol{B}, iff

Problem 1: Reachability Preserver

Proof Snippet

Farthest min-cut

Definition

The min cut $\{\boldsymbol{A}, \boldsymbol{B}\}$ for which the set A is of maximum size.

Characterisation

Vertex \boldsymbol{w} lies in \boldsymbol{B}, iff

Problem 1: Reachability Preserver

Proof Snippet

Farthest min-cut

Definition

The min cut $\{\boldsymbol{A}, \boldsymbol{B}\}$ for which the set A is of maximum size.

Characterisation

Vertex \boldsymbol{w} lies in \boldsymbol{B}, iff
max-flow $(\mathrm{G}+(s, w))>$ max-flow (G)

Problem 1: Reachability Preserver

Proof Snippet

Problem 1: Reachability Preserver

Proof Snippet
Bottleneck: $s \mathbf{X v}$-preserver, with bounded in-degree(v)

Problem 1: Reachability Preserver

Proof Snippet
Bottleneck: $s \mathbf{X v}$ - preserver, with bounded in-degree(v)
s $\times V(G)$ - preserver

Problem 1: Reachability Preserver

Proof Snippet
Bottleneck: $s \mathbf{X v}$-preserver, with bounded in-degree(v)
s X $V(G)$ - preserver

Preserves reachability from s to each vertex of G

Problem 1: Reachability Preserver

Proof Snippet

Bottleneck: $s \mathbf{X v}$ - preserver, with bounded in-degree(v)

```
s\timesV(G)-preserver
```

Preserves reachability from s to each vertex of G upon failure of at most k edges

Problem 1: Reachability Preserver

Proof Snippet
Bottleneck: $s \mathbf{X} v$ - preserver, with bounded in-degree(v)
s X $V(G)$ - preserver

Preserves reachability from s to each vertex of G upon failure of at most k edges

Problem 1: Reachability Preserver

Proof Snippet

Bottleneck: $s \mathbf{X} v$-preserver, with bounded in-degree(v)

```
s\timesV(G)-preserver
```

Preserves reachability from s to each vertex of G upon failure of at most k edges

Main Goal

s $x V(G)$ - preserver in which
in-degree of each vertex is bounded

Problem 1: Reachability Preserver

Proof Snippet

Bottleneck: $s \mathbf{X v}$-preserver, with bounded in-degree(v)

```
s\timesV(G)-preserver
```

Preserves reachability from s to each vertex of G upon failure of at most k edges

Main Goal

s $x V(G)$ - preserver in which in-degree of each vertex is bounded

Problem 1: Reachability Preserver

Proof Snippet

Bottleneck: $s \mathbf{X v}$-preserver, with bounded in-degree(v)

```
s\timesV(G)-preserver
```

s Xv-preserver

Preserves reachability from s to each vertex of G upon failure of at most k edges

Main Goal
s $x V(G)$ - preserver in which
in-degree of each vertex is bounded

Problem 1: Reachability Preserver

Proof Snippet

Bottleneck: $s \times v$-preserver, with bounded in-degree(v)

s $\times V(G)$ - preserver

Preserves reachability from s to each vertex of G upon failure of at most k edges

```
s Xv-preserver
```

Preserves reachability from s to only v

Main Goal

s $x V(G)$ - preserver in which in-degree of each vertex is bounded

Problem 1: Reachability Preserver

Proof Snippet

Bottleneck: $s \mathbf{X v}$ - preserver, with bounded in-degree(v)

s $\times V(G)$ - preserver

Preserves reachability from s to each vertex of G upon failure of at most k edges
$\underline{s} X v$ - preserver

Preserves reachability from s to only v upon failure of at most k edges

Main Goal
s $\times V(G)$ - preserver in which in-degree of each vertex is bounded

Problem 1: Reachability Preserver

Proof Snippet

Bottleneck: $s \times v$-preserver, with bounded in-degree(v)

s $\times V(G)$ - preserver

Preserves reachability from s to each vertex of G upon failure of at most k edges

Main Goal

s $x V(G)$ - preserver in which in-degree of each vertex is bounded

```
SXv-preserver
```

Preserves reachability from s to only v upon failure of at most k edges

A Simpler Problem

Problem 1: Reachability Preserver

Proof Snippet

Bottleneck: $s \mathbf{X v}$ - preserver, with bounded in-degree(v)

s $\times V(G)$ - preserver

```
s Xv-preserver
```

Preserves reachability from s to only v upon failure of at most k edges

Main Goal

s $x V(G)$ - preserver in which in-degree of each vertex is bounded

A Simpler Problem

$s X v$-preserver in which in-degree of only v is bounded

Problem 1: Reachability Preserver

Proof Snippet

Bottleneck: $s \times v$-preserver, with bounded in-degree(v)

s $\times V(G)$ - preserver

```
SXv-preserver
```

Preserves reachability from s to each vertex of G upon failure of at most k edges

Main Goal
$s \boldsymbol{X} V(G)$ - preserver in which in-degree of each vertex is bounded

A Simpler Problem

$s X v$-preserver in which in-degree of only v is bounded

Problem 1: Reachability Preserver

Proof Snippet
Bottleneck: $s \mathbf{X v}$-preserver, with bounded in-degree(v)

Problem 1: Reachability Preserver

Proof Snippet
Bottleneck: $s \mathbf{X v}$-preserver, with bounded in-degree(v)

Case 1: Max-Flow(s,v) $\geq \mathbf{k + 1}$

Problem 1: Reachability Preserver

Proof Snippet
Bottleneck: $s \mathbf{X v}$ - preserver, with bounded in-degree(v)

Case 1: Max-Flow(s,v) $\geq \mathbf{k + 1}$

Problem 1: Reachability Preserver

Proof Snippet
Bottleneck: $s \mathbf{X v}$-preserver, with bounded in-degree(v)

Case 1: Max-Flow(s,v) $\geq \mathbf{k + 1}$

$\boldsymbol{H}=$ Union of any $k+1$ edge-disjoint paths

Problem 1: Reachability Preserver

Proof Snippet
Bottleneck: $s \mathbf{X v}$-preserver, with bounded in-degree(v)

Problem 1: Reachability Preserver

Proof Snippet
Bottleneck: $s \times v$-preserver, with bounded in-degree(v)

Case 2: Max-Flow(s,v) = r < k+1

Problem 1: Reachability Preserver

Proof Snippet
Bottleneck: $s \mathbf{X v}$ - preserver, with bounded in-degree(v)

Case 2: Max-Flow(s,v) = r < k+1

- Let farthest Min-cut $=\left\{\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right), \ldots,\left(\mathrm{a}_{\mathrm{r}}, \mathrm{b}_{\mathrm{r}}\right)\right\}$

Problem 1: Reachability Preserver

Proof Snippet
Bottleneck: $s \mathbf{X v}$ - preserver, with bounded in-degree(v)

Case 2: Max-Flow(s,v) = r < k+1

- Let farthest Min-cut $=\left\{\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right), \ldots,\left(\mathrm{a}_{\mathrm{r}}, \mathrm{b}_{\mathrm{r}}\right)\right\}$

$$
\mathrm{G}_{1}:=\mathrm{G}+\left(\mathrm{s}, \mathrm{~b}_{1}\right)
$$

Problem 1: Reachability Preserver

Proof Snippet
Bottleneck: $s \mathbf{X v}$ - preserver, with bounded in-degree(v)

Case 2: Max-Flow(s,v) = r < k+1

- Let farthest Min-cut $=\left\{\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right), \ldots,\left(\mathrm{a}_{\mathrm{r}}, \mathrm{b}_{\mathrm{r}}\right)\right\}$

$$
\mathrm{G}_{1}:=\mathrm{G}+\left(\mathrm{s}, \mathrm{~b}_{1}\right)
$$

Problem 1: Reachability Preserver

Proof Snippet
Bottleneck: $s \mathbf{X v}$ - preserver, with bounded in-degree(v)

Case 2: Max-Flow(s,v) = r < k+1

- Let farthest Min-cut $=\left\{\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right), \ldots,\left(\mathrm{a}_{\mathrm{r}}, \mathrm{b}_{\mathrm{r}}\right)\right\}$

$\mathrm{G}_{1}:=\mathrm{G}+\left(\mathrm{s}, \mathrm{b}_{1}\right)$

Problem 1: Reachability Preserver

Proof Snippet
Bottleneck: $s \mathbf{X v}$ - preserver, with bounded in-degree(v)

Case 2: Max-Flow(s,v) = r < k+1

- Let farthest Min-cut $=\left\{\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right), \ldots,\left(\mathrm{a}_{\mathrm{r}}, \mathrm{b}_{\mathrm{r}}\right)\right\}$

$\mathrm{G}_{1}:=\mathrm{G}+\left(\mathrm{s}, \mathrm{b}_{1}\right)$

Problem 1: Reachability Preserver

Proof Snippet
Bottleneck: $s \mathbf{X v}$ - preserver, with bounded in-degree(v)

Case 2: Max-Flow(s,v) = r < k+1

- Let farthest Min-cut $=\left\{\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right), \ldots,\left(\mathrm{a}_{\mathrm{r}}, \mathrm{b}_{\mathrm{r}}\right)\right\}$

$\mathrm{G}_{1}:=\mathrm{G}+\left(\mathrm{s}, \mathrm{b}_{1}\right)$

$\mathrm{G}_{2}:=\mathrm{G}+\left(\mathrm{s}, \mathrm{b}_{2}\right)$

Problem 1: Reachability Preserver

Proof Snippet
Bottleneck: $s \mathbf{X v}$ - preserver, with bounded in-degree(v)

Case 2: Max-Flow(s,v) = r < k+1

- Let farthest Min-cut $=\left\{\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right), \ldots,\left(\mathrm{a}_{\mathrm{r}}, \mathrm{b}_{\mathrm{r}}\right)\right\}$
- Find Preserver (say H_{i}) w.r.t. $G_{i}=G+\left(s, b_{i}\right)$

$\mathrm{G}_{1}:=\mathrm{G}+\left(\mathrm{s}, \mathrm{b}_{1}\right)$

$\mathrm{G}_{2}:=\mathrm{G}+\left(\mathrm{s}, \mathrm{b}_{2}\right)$

Problem 1: Reachability Preserver

Proof Snippet
Bottleneck: $s \mathbf{X v}$ - preserver, with bounded in-degree(v)

Case 2: Max-Flow(s,v) = r < k+1

- Let farthest Min-cut $=\left\{\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right), \ldots,\left(\mathrm{a}_{\mathrm{r}}, \mathrm{b}_{\mathrm{r}}\right)\right\}$
- Find Preserver (say H_{i}) w.r.t. $G_{i}=G+\left(s, b_{i}\right)$
- SET: $E(v, H)=\bigcup_{i=1 \text { to } r} E\left(v, H_{i}\right)$

$\mathrm{G}_{1}:=\mathrm{G}+\left(\mathrm{s}, \mathrm{b}_{1}\right)$

$\mathrm{G}_{2}:=\mathrm{G}+\left(\mathrm{s}, \mathrm{b}_{2}\right)$

Problem 2: SCC Oracle

Input: directed graph $G=(V, E)$, parameter \boldsymbol{k}.

Output: a data-structure that on failure of any set \boldsymbol{F} of \boldsymbol{k} edges outputs:

Problem 2: SCC Oracle

Input: directed graph $G=(V, E)$, parameter \boldsymbol{k}.

Output: a data-structure that on failure of any set F of \boldsymbol{k} edges outputs:
Strongly-connected-components (SCCs) of $G \backslash F$

Problem 2: SCC Oracle

Input: directed graph $G=(V, E)$, parameter \boldsymbol{k}.

Output: a data-structure that on failure of any set F of \boldsymbol{k} edges outputs:

Strongly-connected-components (SCCs) of $G \backslash F$

Example ($\mathrm{k}=1$)

Problem 2: SCC Oracle

Input: directed graph $G=(V, E)$, parameter \boldsymbol{k}.

Output: a data-structure that on failure of any set F of \boldsymbol{k} edges outputs:
Strongly-connected-components (SCCs) of $G \backslash F$

Example ($\mathrm{k}=1$)

G

Problem 2: SCC Oracle

Input: directed graph $G=(V, E)$, parameter \boldsymbol{k}.

Output: a data-structure that on failure of any set F of \boldsymbol{k} edges outputs:
Strongly-connected-components (SCCs) of $G \backslash F$

Example ($\mathrm{k}=1$)

G

Problem 2: SCC Oracle

Input: directed graph $G=(V, E)$, parameter \boldsymbol{k}.

Output: a data-structure that on failure of any set F of \boldsymbol{k} edges outputs:
Strongly-connected-components (SCCs) of $G \backslash F$

Example ($\mathrm{k}=1$)

G
SCCs in $G \backslash F$

Problem 2: SCC Oracle

Input: directed graph $G=(V, E)$, parameter \boldsymbol{k}.

Output: a data-structure that on failure of any set F of \boldsymbol{k} edges outputs:
Strongly-connected-components (SCCs) of $G \backslash F$

Problem 2: SCC Oracle

Input: directed graph $G=(V, E)$, parameter \boldsymbol{k}.

Output: a data-structure that on failure of any set \boldsymbol{F} of \boldsymbol{k} edges outputs:
Strongly-connected-components (SCCs) of $G \backslash F$

Prior Work:
[Italiano et al. (2017)]:

- $\mathrm{k}=1$ (single failure)
- An oracle of $O(n)$ size
- Reporting time is $O(n)$

Problem 2: SCC Oracle

Input: directed graph $G=(V, E)$, parameter \boldsymbol{k}.

Output: a data-structure that on failure of any set \boldsymbol{F} of \boldsymbol{k} edges outputs:
Strongly-connected-components (SCCs) of $G \backslash F$

Prior Work:
[Italiano et al. (2017)]:

- $\mathrm{k}=1$ (single failure)
- An oracle of $O(n)$ size
- Reporting time is $O(n)$

Problem 2: SCC Oracle

Input: directed graph $G=(V, E)$, parameter \boldsymbol{k}.

Output: a data-structure that on failure of any set \boldsymbol{F} of \boldsymbol{k} edges outputs:
Strongly-connected-components (SCCs) of $G \backslash F$

Prior Work:
[Italiano et al. (2017)]:

- $\mathrm{k}=1$ (single failure)
- An oracle of $O(n)$ size
- Reporting time is $O(n)$

Our Results for general k :

Oracle:

Problem 2: SCC Oracle

Input: directed graph $G=(V, E)$, parameter \boldsymbol{k}.

Output: a data-structure that on failure of any set \boldsymbol{F} of \boldsymbol{k} edges outputs:

Strongly-connected-components (SCCs) of $G \backslash F$

Prior Work:
[Italiano et al. (2017)]:

- $\mathrm{k}=1$ (single failure)
- An oracle of $O(n)$ size
- Reporting time is $O(n)$

Our Results for general k :

Oracle: $O_{k}\left(n^{2}\right)$ size

Problem 2: SCC Oracle

Input: directed graph $G=(V, E)$, parameter \boldsymbol{k}.

Output: a data-structure that on failure of any set \boldsymbol{F} of \boldsymbol{k} edges outputs:

Strongly-connected-components (SCCs) of $G \backslash F$

Prior Work:
[Italiano et al. (2017)]:

- $\mathrm{k}=1$ (single failure)
- An oracle of $O(n)$ size
- Reporting time is $O(n)$

Our Results for general k :

Oracle: $O_{k}\left(n^{2}\right)$ size

Reporting time:

Problem 2: SCC Oracle

Input: directed graph $G=(V, E)$, parameter \boldsymbol{k}.

Output: a data-structure that on failure of any set \boldsymbol{F} of \boldsymbol{k} edges outputs:

Strongly-connected-components (SCCs) of $G \backslash F$

Prior Work:
[Italiano et al. (2017)]:

- $\mathrm{k}=1$ (single failure)
- An oracle of $O(n)$ size
- Reporting time is $O(n)$

Our Results for general k :

Oracle: $O_{k}\left(n^{2}\right)$ size

Reporting time: $O_{k}(n)$

Problem 2: SCC Oracle

Proof Snippet
Bottleneck: SCCs intersecting fixed path P

Problem 2: SCC Oracle

Proof Snippet
Bottleneck: SCCs intersecting fixed path P

Lemma:
If we can compute SCCs in $\mathrm{G} \backslash \mathrm{F}$ intersecting a path " P " in $F(n, k)$ time, then, we can compute $A L L$ the SCCs of $\mathrm{G} \backslash \mathrm{F}$ in $\mathrm{O}(F(n, k) \log n)$ time.

Problem 2: SCC Oracle

Proof Snippet
Bottleneck: SCCs intersecting fixed path P

Problem 2: SCC Oracle

Proof Snippet
Bottleneck: SCCs intersecting fixed path P

Problem 2: SCC Oracle

Proof Snippet
Bottleneck: SCCs intersecting fixed path P

Problem 2: SCC Oracle

Proof Snippet

Bottleneck: SCCs intersecting fixed path P

Problem 2: SCC Oracle

Proof Snippet

Bottleneck: SCCs intersecting fixed path P

Problem 2: SCC Oracle

Proof Snippet
Bottleneck: SCCs intersecting fixed path P

Problem 2: SCC Oracle

Proof Snippet

Bottleneck: SCCs intersecting fixed path P

In $O\left(\mathbf{2}^{k} \boldsymbol{n}\right)$ time - divide problem into two sub-problems

Problem 2: SCC Oracle

Proof Snippet

Bottleneck: SCCs intersecting fixed path P

In $O\left(\mathbf{2}^{k} \boldsymbol{n}\right)$ time - divide problem into two sub-problems
Recursively solve in $O\left(2^{k} n \log |P|\right)$ time

Problem 2: SCC Oracle

Proof Snippet

Computing all SCCs

Lemma:
If we can compute SCCs in $G \backslash F$ intersecting a path " P " in $F(n, k)$ time, then, we can compute ALL the SCCs of G\F in $O(F(n, k) \log n)$ time.

Problem 2: SCC Oracle

Proof Snippet

Computing all SCCs

Lemma:

If we can compute SCCs in $G \backslash F$ intersecting a path " P " in $F(n, k)$ time, then, we can compute ALL the SCCs of G\F in $O(F(n, k) \log n)$ time.

Main Result:

For any set F of k failures, we can compute SCCs of graph $G \backslash F$ in $O\left(2^{k} n \log ^{2} n\right)$ time.

Problem 2: SCC Oracle

Proof Snippet

Computing all SCCs

Lemma:

If we can compute SCCs in $G \backslash F$ intersecting a path " P " in $F(n, k)$ time, then, we can compute ALL the SCCs of G\F in $O(F(n, k) \log n)$ time.

Main Result:

For any set F of k failures, we can compute SCCs of graph $G \backslash F$ in $O\left(2^{k} n \log ^{2} n\right)$ time.

Size of the oracle is $O\left(2^{k} n^{2}\right)$.

Thank row

