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Answer queries of the form: 
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• Minimum Spanning-tree

Naive approach  
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Why should we learn this model? 

Dynamic graph algorithms models:

• Fully dynamic – An update is an edge insertion or deletion
• Decremental – An update is an edge deletion 
• Incremental – An update is an edge insertion  

Fault Tolerant Model
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Too general 

In many real world networks changes are very limited and transient 

Road networks, communication networks etc.  

Fault Tolerant Model

Fully dynamic / Dec / Inc model 
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G H

Compute

H\F  preserves a 
“pre-specified property”   

of G\F, 
for all possible F, |F|   k
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H\F

t

for every t ∈ V

Problem 1: Reachability Preserver

Our Results for general k:

O(2k n) edges

Existential bound of Ω(2k n) edges

Upper Bound:

Lower Bound:
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The min cut {A,B} for which 
the set A is of maximum size.

Definition

Characterisation

Vertex w lies in B, iff w
max-flow(G+(s,w)) > max-flow(G)
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In-degree at most: (k+1)!                  
Problem 1: Reachability Preserver
Proof Snippet

Case 2: Max-Flow(s,v) = r <  k+1

Bottleneck:  s x v - preserver , with bounded in-degree(v)

• Let farthest Min-cut = {(a1,b1), …., (ar,br)}

v

s

a1

b1

a2

b2

G1 := G+(s,b1)

v

s

a1

b1

a2

b2

G2 := G+(s,b2)

• Find Preserver (say Hi) w.r.t. Gi = G+(s,bi)  

• SET:  E(v,H) =  U     E(v,Hi)
i=1 to r
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Prior Work:

[Italiano et al. (2017)]:
• k=1 (single failure)

• An oracle of O(n) size

• Reporting time is O(n)

Our Results for general k:

Ok(n2) size

Ok(n)

Oracle:

Reporting time:
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Lemma:  
  
If we can compute SCCs in G\F  intersecting a path “P” in F(n,k) time,  
then, we can compute ALL the SCCs of G\F in O(F(n,k) log n) time.
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Proof Snippet
Problem 2: SCC Oracle

Bottleneck:  SCCs intersecting fixed path P

vertices 
reachable 
from w in 

G\F

vertices 
having path 
to w in G\F

w

=V2 V1 =

SCC(w)

In O(2k n) time — divide problem into two sub-problems 

Recursively solve in O(2k n log |P|) time

V1 \ SCC(w)V2 \ SCC(w)
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Proof Snippet
Problem 2: SCC Oracle

Computing all SCCs

Main Result:  
  
For any set F of k failures, we can compute SCCs of graph G\F in  
                                          O(2kn log2n) time.

Size of the oracle is O(2kn2).

Lemma:  
  
If we can compute SCCs in G\F  intersecting a path “P” in F(n,k) time,  
then, we can compute ALL the SCCs of G\F in O(F(n,k) log n) time.



Thank  You


